Imre Gergely, Takács Bertalan, Czipa Erik, Drubi Andrea Bakné, Jaksa Gábor, Latinovics Dóra, Nagy Andrea, Karkas Réka, Hudoba Liza, Vásárhelyi Bálint Márk, Pankotai-Bodó Gabriella, Blastyák András, Hegedűs Zoltán, Germán Péter, Bálint Balázs, Ahmed Abdullah Khaldoon Sadiq, Kopasz Anna Georgina, Kovács Anita, Nagy László G, Sükösd Farkas, Pintér Lajos, Rülicke Thomas, Barta Endre, Nagy István, Haracska Lajos, Mátés Lajos
Laboratory of Cancer Genome Research, Institute of Genetics, Biological Research Centre, Szeged, Hungary.
Doctoral School of Biology, University of Szeged, Szeged, Hungary.
Mol Ther Methods Clin Dev. 2023 Mar 14;29:145-159. doi: 10.1016/j.omtm.2023.03.003. eCollection 2023 Jun 8.
DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the c and systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of c integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of -generated integrations is closer to random. We also revealed that the c transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.
基于DNA转座子的基因传递载体代表了基因治疗中随机整合载体开发的一个有前景的新分支。为了在治疗干预期间对c和 系统(目前仅有的两种用于临床试验的DNA转座子)进行并行评估,我们使用这两种转座子载体对I型酪氨酸血症小鼠模型进行了肝脏靶向基因传递治疗。为了对转座子插入位点进行全基因组定位,我们开发了一种新的下一代测序程序,称为基于链霉亲和素的富集测序,这使我们能够确定这两种系统的大约一百万个整合位点。我们发现,c整合的很大一部分聚集在热点区域,并且发现在接受治疗的动物中它们经常在相同的基因组位置反复出现,这表明 产生的整合在全基因组范围内的分布更接近随机分布。我们还发现,c转座酶蛋白表现出延长的活性,这预示着通过产生染色体双链断裂而导致肿瘤发生的风险。与转座活性延长相关的安全问题凸显了将转座酶的活性状态压缩到更窄时间窗口的重要性。