Suppr超能文献

基于密度泛函理论的含能 DNA 碱基对手性 CNT 电子响应研究作为一种测序仪。

A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer.

机构信息

Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.

出版信息

Sci Rep. 2024 May 11;14(1):10826. doi: 10.1038/s41598-024-61677-0.

Abstract

Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.

摘要

对 DNA 碱基进行测序对于诊断和治疗许多与人类基因相关的疾病至关重要。在本文中,研究了一些重要的合成手性(7,6)、(8,6)和(10,8)碳纳米管对 DNA 碱基的封装。采用基于紧束缚方法的密度泛函理论(DFTB),通过考虑半经验基组对结构进行建模。将 DNA 碱基封装在 CNT 内部会引起所选手性 CNT 电子性质的变化。结果证实范德华(vdW)相互作用、π轨道相互作用、非键电子对和高电负性原子的存在是这些变化的关键因素。电子参数的结果表明,在 CNT 中,CNT(8,6)是测序鸟嘌呤(G)和胞嘧啶(C)DNA 碱基的合适选择。然而,它们不能测序腺嘌呤(A)和胸腺嘧啶(T)。根据带隙能量工程方法和吸收能量,G 和 C DNA 碱基的存在降低了 CNT 的带隙能量。因此,所选 CNT 被建议作为测序 G 和 C DNA 碱基的生物传感器基底。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50dc/11636929/852b9f8af2cf/41598_2024_61677_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验