Suppr超能文献

锂-氮电池用于氨合成及计算研究

Li-N Battery for Ammonia Synthesis and Computational Insight.

机构信息

State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping, Beijing 102249, P. R. China.

Shenzhen HUASUAN Technology Co., Ltd., Shenzhen 518055, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19032-19042. doi: 10.1021/acsami.3c01929. Epub 2023 Apr 7.

Abstract

Electrochemical synthesis of ammonia is deemed as an alternative to the fossil-fuel-driven Haber-Bosch (HB) process, in which Li-mediated nitrogen reduction (LiNR) is the most promising scheme. Continuous lithium-mediated nitrogen reduction for ammonia synthesis (C-LiNR) has recently been reported in high-level journals with many foggy internal reactions. Synthesizing ammonia in a separate way may be profitable for understanding the mechanism of LiNR. Herein, an intermittent lithium-mediated nitrogen reduction for ammonia synthesis (I-LiNR) was proposed, three steps required for I-LiNR were achieved in the cathode chamber of a Li-N battery. Discharge, stand, and charge in the Li-N battery correspond to N lithification, protonation, and lithium regeneration, respectively. It can also realize the quasi-continuous process with practical significance because it could be carried out through identical batteries. Products such as LiN, LiOH, and NH are detected experimentally, which demonstrate a definite reaction pathway. The mechanism of the Li-N battery, the Li-mediated synthesis of ammonia, and LiOH decomposition are explored through density functional theory calculations. The role of Li in dinitrogen activation is highlighted. It expands the range of LiOH-based Li-air batteries and may guide the study from Li-air to Li-N; attention has been given to the reaction mechanism of Li-mediated nitrogen reduction. The challenges and opportunities of the procedure are discussed in the end.

摘要

电化学合成氨被认为是替代化石燃料驱动的 Haber-Bosch (HB) 工艺的一种方法,其中锂介导的氮还原 (LiNR) 是最有前途的方案。最近,在高水平期刊上报道了连续锂介导的氨合成氮还原 (C-LiNR),其中许多内部反应仍不清晰。以分离的方式合成氨可能有助于理解 LiNR 的机制。在此,提出了间歇式锂介导的氨合成氮还原 (I-LiNR),在 Li-N 电池的阴极室中实现了 I-LiNR 所需的三个步骤。Li-N 电池中的放电、静置和充电分别对应于 N 锂化、质子化和锂再生。由于可以通过相同的电池进行,因此它也可以实现具有实际意义的准连续过程。实验中检测到 LiN、LiOH 和 NH 等产物,证明了明确的反应途径。通过密度泛函理论计算,探讨了 Li-N 电池的机理、锂介导的氨合成和 LiOH 分解。强调了 Li 在二氮活化中的作用。它扩展了基于 LiOH 的 Li-空气电池的范围,并可能指导从 Li-空气到 Li-N 的研究;关注了 Li 介导的氮还原的反应机制。最后讨论了该过程的挑战和机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验