Suppr超能文献

锂氮电池放电产物及其稳定性的第一性原理研究

First-Principles Study of Discharge Products and Their Stability for Lithium-Nitrogen Batteries.

作者信息

Qu Guoxiong, Zhao Xudong, Wei Chengdong, Zhang Hongyi, Yang Yutong, Xue Hongtao, Tang Fuling

机构信息

State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.

出版信息

Materials (Basel). 2024 May 18;17(10):2429. doi: 10.3390/ma17102429.

Abstract

Li-N batteries present a relatively novel approach to N immobilization, and an advanced N/LiN cycling method is introduced in this study. The low operating overpotential of metal-air batteries is quite favorable to their stable cycling performance, providing a prospect for the development of a new type of battery with extreme voltage. The battery system of Li-N uses N as the positive electrode, lithium metal as the negative electrode, and a conductive medium containing soluble lithium salts as the electrolyte. In accordance with its voltage-distribution trend, a variety of lithium-nitrogen molecule intermediates are produced during the discharge process. There is a lack of theoretical description of material changes at the microscopic level during the discharge process. In this paper, the first-principles approach is used to simulate and analyze possible material changes during the discharge process of Li-N batteries. The discharge process is simulated on a 4N-graphene anode substrate model, and simulations of its electrostatic potential, Density of States (DOS), HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) aspects confirm that the experimentally found LiN becomes the final stabilized product of the Li-N battery. It can also be seen in the density of states that graphene with adsorption of 4N transforms from semiconducting to metallic properties. In addition, the differential charge also indicates that the Li-N material has a strong adsorption effect on the substrate, which can play the dual role of electricity storage and nitrogen fixation.

摘要

锂氮电池为氮固定提供了一种相对新颖的方法,本研究引入了一种先进的氮/锂氮循环方法。金属空气电池较低的工作过电位对其稳定的循环性能非常有利,为开发具有极高电压的新型电池提供了前景。锂氮电池系统以氮为正极,锂金属为负极,以含有可溶性锂盐的导电介质为电解质。根据其电压分布趋势,在放电过程中会产生多种锂氮分子中间体。目前缺乏对放电过程中微观层面材料变化的理论描述。本文采用第一性原理方法对锂氮电池放电过程中可能的材料变化进行模拟和分析。在一个4N石墨烯阳极基底模型上模拟了放电过程,对其静电势、态密度(DOS)、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)方面的模拟证实,实验发现的LiN成为锂氮电池最终的稳定产物。从态密度中还可以看出,吸附了4N的石墨烯从半导体性质转变为金属性质。此外,差分电荷也表明锂氮材料对基底有很强的吸附作用,可起到储能和固氮的双重作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf32/11122825/b103847ea55c/materials-17-02429-g001.jpg

相似文献

1
First-Principles Study of Discharge Products and Their Stability for Lithium-Nitrogen Batteries.
Materials (Basel). 2024 May 18;17(10):2429. doi: 10.3390/ma17102429.
2
Theoretical Study of Catalytic Performance of Pristine MC and Oxygen-Functionalized MCO MXenes as Cathodes for Li-N Batteries.
ACS Appl Mater Interfaces. 2024 Jul 3;16(26):33710-33722. doi: 10.1021/acsami.4c07670. Epub 2024 Jun 21.
3
Li-N Battery for Ammonia Synthesis and Computational Insight.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19032-19042. doi: 10.1021/acsami.3c01929. Epub 2023 Apr 7.
4
Mixed Ion/Electron Conductive LiN-Mo Interphase Enabling Stable and Ultrahigh-Rate Lithium Metal Anodes.
ACS Appl Mater Interfaces. 2023 May 3;15(17):21066-21074. doi: 10.1021/acsami.3c01528. Epub 2023 Apr 21.
5
Photo-Assisted Li-N Batteries with Enhanced Nitrogen Fixation and Energy Conversion.
Angew Chem Int Ed Engl. 2024 Mar 11;63(11):e202319211. doi: 10.1002/anie.202319211. Epub 2024 Jan 23.
6
Metallic VS/graphene heterostructure as an ultra-high rate and high-specific capacity anode material for Li/Na-ion batteries.
Phys Chem Chem Phys. 2021 Sep 14;23(34):18784-18793. doi: 10.1039/d1cp02243a. Epub 2021 Aug 19.
7
Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):36388-36406. doi: 10.1021/acsami.1c05508. Epub 2021 Jul 26.
8
A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
J Mol Graph Model. 2021 Nov;108:107998. doi: 10.1016/j.jmgm.2021.107998. Epub 2021 Aug 4.
9
Li-N Batteries: A Reversible Energy Storage System?
Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17782-17787. doi: 10.1002/anie.201911338. Epub 2019 Oct 24.
10
LiN-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C.
Nano Lett. 2018 Nov 14;18(11):7414-7418. doi: 10.1021/acs.nanolett.8b03902. Epub 2018 Oct 24.

本文引用的文献

1
Li-N Battery for Ammonia Synthesis and Computational Insight.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19032-19042. doi: 10.1021/acsami.3c01929. Epub 2023 Apr 7.
2
Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
J Phys Chem C Nanomater Interfaces. 2023 Jan 13;127(3):1455-1463. doi: 10.1021/acs.jpcc.2c08429. eCollection 2023 Jan 26.
3
Li-N Batteries: A Reversible Energy Storage System?
Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17782-17787. doi: 10.1002/anie.201911338. Epub 2019 Oct 24.
5
A new carbon allotrope with orthorhombic symmetry formed via graphitic sheet buckling.
Phys Chem Chem Phys. 2018 Sep 12;20(35):22762-22767. doi: 10.1039/c8cp04129f.
6
Verifying the Rechargeability of Li-CO Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.
Adv Sci (Weinh). 2017 Nov 10;5(2):1700567. doi: 10.1002/advs.201700567. eCollection 2018 Feb.
7
An atlas of two-dimensional materials.
Chem Soc Rev. 2014 Sep 21;43(18):6537-54. doi: 10.1039/c4cs00102h.
8
Li-O2 and Li-S batteries with high energy storage.
Nat Mater. 2011 Dec 15;11(1):19-29. doi: 10.1038/nmat3191.
9
Ab-initio simulations of materials using VASP: Density-functional theory and beyond.
J Comput Chem. 2008 Oct;29(13):2044-78. doi: 10.1002/jcc.21057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验