Suppr超能文献

配对竞争神经元改善脉冲神经网络中基于STDP的监督局部学习

Paired competing neurons improving STDP supervised local learning in Spiking Neural Networks.

作者信息

Goupy Gaspard, Tirilly Pierre, Bilasco Ioan Marius

机构信息

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France.

出版信息

Front Neurosci. 2024 Jul 24;18:1401690. doi: 10.3389/fnins.2024.1401690. eCollection 2024.

Abstract

Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware has the potential to significantly reduce the energy consumption of artificial neural network training. SNNs trained with Spike Timing-Dependent Plasticity (STDP) benefit from gradient-free and unsupervised local learning, which can be easily implemented on ultra-low-power neuromorphic hardware. However, classification tasks cannot be performed solely with unsupervised STDP. In this paper, we propose Stabilized Supervised STDP (S2-STDP), a supervised STDP learning rule to train the classification layer of an SNN equipped with unsupervised STDP for feature extraction. S2-STDP integrates error-modulated weight updates that align neuron spikes with desired timestamps derived from the average firing time within the layer. Then, we introduce a training architecture called Paired Competing Neurons (PCN) to further enhance the learning capabilities of our classification layer trained with S2-STDP. PCN associates each class with paired neurons and encourages neuron specialization toward target or non-target samples through intra-class competition. We evaluate our methods on image recognition datasets, including MNIST, Fashion-MNIST, and CIFAR-10. Results show that our methods outperform state-of-the-art supervised STDP learning rules, for comparable architectures and numbers of neurons. Further analysis demonstrates that the use of PCN enhances the performance of S2-STDP, regardless of the hyperparameter set and without introducing any additional hyperparameters.

摘要

在神经形态硬件上直接训练脉冲神经网络(SNN)有潜力显著降低人工神经网络训练的能耗。通过基于脉冲时间依赖可塑性(STDP)训练的SNN受益于无梯度且无监督的局部学习,这可以在超低功耗的神经形态硬件上轻松实现。然而,分类任务不能仅通过无监督的STDP来执行。在本文中,我们提出了稳定监督STDP(S2 - STDP),这是一种监督STDP学习规则,用于训练配备无监督STDP进行特征提取的SNN的分类层。S2 - STDP集成了误差调制的权重更新,使神经元脉冲与从层内平均放电时间导出的期望时间戳对齐。然后,我们引入了一种称为配对竞争神经元(PCN)的训练架构,以进一步增强用S2 - STDP训练的分类层的学习能力。PCN将每个类别与配对神经元相关联,并通过类内竞争鼓励神经元针对目标或非目标样本进行专门化。我们在图像识别数据集上评估我们的方法,包括MNIST、Fashion - MNIST和CIFAR - 10。结果表明,对于可比的架构和神经元数量,我们的方法优于现有的监督STDP学习规则。进一步分析表明,无论超参数设置如何,使用PCN都能提高S2 - STDP的性能,并且无需引入任何额外的超参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f42/11307446/8149d224b5af/fnins-18-1401690-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验