Suppr超能文献

基于重复阻抗学习的物理人机交互式控制。

Repetitive Impedance Learning-Based Physically Human-Robot Interactive Control.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10629-10638. doi: 10.1109/TNNLS.2023.3243091. Epub 2024 Aug 5.

Abstract

Model-based impedance learning control can provide variable impedance regulation for robots through online impedance learning without interaction force sensing. However, the existing related results only guarantee the closed-loop control systems to be uniformly ultimately bounded (UUB) and require the human impedance profiles being periodic, iteration-dependent, or slowly varying. In this article, a repetitive impedance learning control approach is proposed for physical human-robot interaction (PHRI) in repetitive tasks. The proposed control is composed of a proportional-differential (PD) control term, an adaptive control term, and a repetitive impedance learning term. Differential adaptation with projection modification is designed for estimating robotic parameters uncertainties in the time domain, while fully saturated repetitive learning is proposed for estimating time-varying human impedance uncertainties in the iterative domain. Uniform convergence of tracking errors is guaranteed by the PD control and the use of projection and full saturation in the uncertainties estimation and is theoretically proved based on a Lyapunov-like analysis. In impedance profiles, the stiffness and damping are composed of an iteration-independent term and an iteration- dependent disturbance, which are estimated by repetitive learning and compressed by the PD control, respectively. Therefore, the developed approach can be applied to the PHRI where iteration-dependent disturbances exist in the stiffness and damping. The control effectiveness and advantages are validated by simulations on a parallel robot in a repetitive following task.

摘要

基于模型的阻抗学习控制可以通过在线阻抗学习为机器人提供可变的阻抗调节,而无需交互力感测。然而,现有的相关结果仅保证闭环控制系统是一致最终有界的(UUB),并且需要人的阻抗轮廓是周期性的、迭代相关的或缓慢变化的。本文提出了一种用于重复任务中物理人机交互(PHRI)的重复阻抗学习控制方法。所提出的控制由比例微分(PD)控制项、自适应控制项和重复阻抗学习项组成。设计了具有投影修正的微分自适应来在时域中估计机器人参数不确定性,而完全饱和的重复学习则用于在迭代域中估计时变人的阻抗不确定性。通过 PD 控制和在不确定性估计中使用投影和全饱和,保证了跟踪误差的一致收敛,并基于类似 Lyapunov 的分析进行了理论证明。在阻抗轮廓中,刚度和阻尼由一个与迭代无关的项和一个与迭代相关的干扰组成,分别由重复学习和 PD 控制来估计和压缩。因此,所开发的方法可以应用于刚度和阻尼中存在迭代相关干扰的 PHRI。通过在重复跟随任务中的并联机器人上的仿真验证了控制的有效性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验