IEEE Trans Med Imaging. 2023 Aug;42(8):2451-2461. doi: 10.1109/TMI.2023.3250474. Epub 2023 Aug 1.
Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes. With the great success of the ten-year BraTS challenges as well as the advances of CNN and Transformer algorithms, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects. However, existing studies hardly consider how to fuse the multi-modality images in a reasonable manner. In this paper, we leverage the clinical knowledge of how radiologists diagnose brain tumors from multiple MRI modalities and propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS. Instead of directly concatenating all the modalities, we re-organize the input modalities by separating them into two groups according to the imaging principle of MRI. A dual-branch hybrid encoder with the proposed modality-correlated cross-attention block (MCCA) is designed to extract the multi-modality image features. The proposed model inherits the strengths from both Transformer and CNN with the local feature representation ability for precise lesion boundaries and long-range feature extraction for 3D volumetric images. To bridge the gap between Transformer and CNN features, we propose a Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the proposed model with six CNN-based models and six transformer-based models on the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the proposed model achieves state-of-the-art brain tumor segmentation performance compared with all the competitors.
脑肿瘤分割(BTS)在磁共振成像(MRI)中对于脑肿瘤的诊断、癌症的管理和研究目的至关重要。随着十年来 BraTS 挑战赛的巨大成功以及 CNN 和 Transformer 算法的进步,提出了许多出色的 BTS 模型来解决 BTS 在不同技术方面的困难。然而,现有研究几乎没有考虑如何以合理的方式融合多模态图像。在本文中,我们利用放射科医生从多种 MRI 模式诊断脑肿瘤的临床知识,提出了一种临床知识驱动的脑肿瘤分割模型,称为 CKD-TransBTS。我们不是直接将所有模态连接起来,而是根据 MRI 的成像原理将输入模态分为两组。设计了一个具有所提出的模态相关交叉注意块(MCCA)的双分支混合编码器,以提取多模态图像特征。所提出的模型继承了 Transformer 和 CNN 的优势,具有局部特征表示能力,用于精确的病变边界,以及用于 3D 体积图像的远程特征提取。为了弥合 Transformer 和 CNN 特征之间的差距,我们在解码器中提出了一个 Trans&CNN 特征校准块(TCFC)。我们在 BraTS 2021 挑战赛数据集上比较了所提出的模型与六个基于 CNN 的模型和六个基于 Transformer 的模型。大量实验表明,与所有竞争对手相比,所提出的模型在脑肿瘤分割性能方面达到了最新水平。