Thanya T, Jeslin T
PET Engineering College, Vallioor, India.
Universal College of Engineering and Technology, Vallioor, India.
Interdiscip Sci. 2025 Jun 18. doi: 10.1007/s12539-025-00708-4.
Brain tumor classification using Magnetic Resonance Imaging (MRI) images is an important and emerging field of medical imaging and artificial intelligence in the current world. With advancements in technology, particularly in deep learning and machine learning, researchers and clinicians are leveraging these tools to create complex models that, using MRI data, can reliably detect and classify tumors in the brain. However, it has a number of drawbacks, including the intricacy of tumor types and grades, intensity variations in MRI data and tumors varying in severity. This paper proposes a Multi-Grade Hierarchical Classification Network Model (MGHCN) for the hierarchical classification of tumor grades in MRI images. The model's distinctive feature lies in its ability to categorize tumors into multiple grades, thereby capturing the hierarchical nature of tumor severity. To address variations in intensity levels across different MRI samples, an Improved Adaptive Intensity Normalization (IAIN) pre-processing step is employed. This step standardizes intensity values, effectively mitigating the impact of intensity variations and ensuring more consistent analyses. The model renders utilization of the Dual Tree Complex Wavelet Transform with Enhanced Trigonometric Features (DTCWT-ETF) for efficient feature extraction. DTCWT-ETF captures both spatial and frequency characteristics, allowing the model to distinguish between different tumor types more effectively. In the classification stage, the framework introduces the Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network (AHOHH-BiLSTM). This multi-grade classification model is designed with a comprehensive architecture, including distinct layers that enhance the learning process and adaptively refine parameters. The purpose of this study is to improve the precision of distinguishing different grades of tumors in MRI images. To evaluate the proposed MGHCN framework, a set of evaluation metrics is incorporated which includes precision, recall, and the F1-score. The structure employs BraTS Challenge 2021, Br35H, and BraTS Challenge 2023 datasets, a significant combination that ensures comprehensive training and evaluation. The MGHCN framework aims to enhance brain tumor classification in MRI images by utilizing these datasets along with a comprehensive set of evaluation metrics, providing a more thorough and sophisticated understanding of its capabilities and performance.
利用磁共振成像(MRI)图像进行脑肿瘤分类是当今医学成像和人工智能领域中一个重要且新兴的领域。随着技术的进步,特别是在深度学习和机器学习方面,研究人员和临床医生正在利用这些工具创建复杂的模型,这些模型使用MRI数据能够可靠地检测和分类脑肿瘤。然而,它存在许多缺点,包括肿瘤类型和分级的复杂性、MRI数据中的强度变化以及严重程度不同的肿瘤。本文提出了一种用于MRI图像中肿瘤分级分层分类的多级分层分类网络模型(MGHCN)。该模型的独特之处在于能够将肿瘤分类为多个等级,从而捕捉肿瘤严重程度的分层性质。为了解决不同MRI样本之间强度水平的变化,采用了改进的自适应强度归一化(IAIN)预处理步骤。这一步骤使强度值标准化,有效减轻强度变化的影响,并确保更一致的分析。该模型利用具有增强三角特征的双树复小波变换(DTCWT-ETF)进行高效特征提取。DTCWT-ETF捕捉空间和频率特征,使模型能够更有效地区分不同的肿瘤类型。在分类阶段,该框架引入了自适应分层优化马群双向长短期记忆融合网络(AHOHH-BiLSTM)。这个多级分类模型设计了一个全面的架构,包括不同的层,这些层增强了学习过程并自适应地优化参数。本研究的目的是提高在MRI图像中区分不同等级肿瘤的精度。为了评估所提出的MGHCN框架,纳入了一组评估指标,包括精度、召回率和F1分数。该结构采用了BraTS Challenge 2021、Br35H和BraTS Challenge 2023数据集,这一重要组合确保了全面的训练和评估。MGHCN框架旨在通过利用这些数据集以及一套全面的评估指标来增强MRI图像中的脑肿瘤分类,从而更全面、深入地了解其能力和性能。