Suppr超能文献

ReenactArtFace:艺术面孔图像再创作。

ReenactArtFace: Artistic Face Image Reenactment.

出版信息

IEEE Trans Vis Comput Graph. 2024 Jul;30(7):4080-4092. doi: 10.1109/TVCG.2023.3253184. Epub 2024 Jun 27.

Abstract

Large-scale datasets and deep generative models have enabled impressive progress in human face reenactment. Existing solutions for face reenactment have focused on processing real face images through facial landmarks by generative models. Different from real human faces, artistic human faces (e.g., those in paintings, cartoons, etc.) often involve exaggerated shapes and various textures. Therefore, directly applying existing solutions to artistic faces often fails to preserve the characteristics of the original artistic faces (e.g., face identity and decorative lines along face contours) due to the domain gap between real and artistic faces. To address these issues, we present ReenactArtFace, the first effective solution for transferring the poses and expressions from human videos to various artistic face images. We achieve artistic face reenactment in a coarse-to-fine manner. First, we perform 3D artistic face reconstruction, which reconstructs a textured 3D artistic face through a 3D morphable model (3DMM) and a 2D parsing map from an input artistic image. The 3DMM can not only rig the expressions better than facial landmarks but also render images under different poses/expressions as coarse reenactment results robustly. However, these coarse results suffer from self-occlusions and lack contour lines. Second, we thus perform artistic face refinement by using a personalized conditional adversarial generative model (cGAN) fine-tuned on the input artistic image and the coarse reenactment results. For high-quality refinement, we propose a contour loss to supervise the cGAN to faithfully synthesize contour lines. Quantitative and qualitative experiments demonstrate that our method achieves better results than the existing solutions.

摘要

大规模数据集和深度生成模型在人脸重放方面取得了令人瞩目的进展。现有的人脸重放解决方案主要通过生成模型处理真实人脸图像中的面部地标。与真实人脸不同,艺术人脸(例如绘画、卡通等中的人脸)通常涉及夸张的形状和各种纹理。因此,由于真实人脸和艺术人脸之间的领域差距,直接将现有解决方案应用于艺术人脸通常无法保留原始艺术人脸的特征(例如,人脸身份和沿人脸轮廓的装饰线)。为了解决这些问题,我们提出了 ReenactArtFace,这是第一个将姿势和表情从人类视频转移到各种艺术人脸图像的有效解决方案。我们以粗到精的方式实现艺术人脸重放。首先,我们进行 3D 艺术人脸重建,通过从输入艺术图像的 3D 可变形模型(3DMM)和 2D 解析图来重建具有纹理的 3D 艺术人脸。3DMM 不仅可以比面部地标更好地拟合表情,还可以稳健地渲染不同姿势/表情下的图像作为粗略的重放结果。然而,这些粗略的结果存在自遮挡问题,并且缺乏轮廓线。其次,我们通过使用针对输入艺术图像和粗略重放结果进行微调的个性化条件对抗生成模型(cGAN)来进行艺术人脸细化。为了进行高质量的细化,我们提出了轮廓损失来监督 cGAN 以真实地合成轮廓线。定量和定性实验表明,我们的方法比现有解决方案取得了更好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验