Suppr超能文献

Bayesian Dictionary Learning on Robust Tubal Transformed Tensor Factorization.

作者信息

Luo Qilun, Li Wen, Xiao Mingqing

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11091-11105. doi: 10.1109/TNNLS.2023.3248156. Epub 2024 Aug 5.

Abstract

The recent study on tensor singular value decomposition (t-SVD) that performs the Fourier transform on the tubes of a third-order tensor has gained promising performance on multidimensional data recovery problems. However, such a fixed transformation, e.g., discrete Fourier transform and discrete cosine transform, lacks being self-adapted to the change of different datasets, and thus, it is not flexible enough to exploit the low-rank and sparse property of the variety of multidimensional datasets. In this article, we consider a tube as an atom of a third-order tensor and construct a data-driven learning dictionary from the observed noisy data along the tubes of the given tensor. Then, a Bayesian dictionary learning (DL) model with tensor tubal transformed factorization, aiming to identify the underlying low-tubal-rank structure of the tensor effectively via the data-adaptive dictionary, is developed to solve the tensor robust principal component analysis (TRPCA) problem. With the defined pagewise tensor operators, a variational Bayesian DL algorithm is established and updates the posterior distributions instantaneously along the third dimension to solve the TPRCA. Extensive experiments on real-world applications, such as color image and hyperspectral image denoising and background/foreground separation problems, demonstrate both effectiveness and efficiency of the proposed approach in terms of various standard metrics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验