Nie Yongming, Chen Linsen, Zhu Hao, Du Sidan, Yue Tao, Cao Xun
Appl Opt. 2017 Aug 1;56(22):6094-6102. doi: 10.1364/AO.56.006094.
In this paper, we have developed a novel model that is named graph-regularized tensor robust principal component analysis (GTRPCA) for denoising hyperspectral images (HSIs). Incorporating spectral graph regularization into TRPCA makes the model more accurate by preserving local geometric structures embedded in a high-dimensional space. Based on tensor singular value decomposition (t-SVD), we introduce a general tensor-based altering direction method of multipliers (ADMM) algorithm which can solve the proposed model for denoising HSIs. Experiments on both the synthetic and real captured datasets have demonstrated the effectiveness of the proposed method.
在本文中,我们开发了一种名为图正则化张量鲁棒主成分分析(GTRPCA)的新型模型,用于对高光谱图像(HSI)进行去噪。将光谱图正则化纳入TRPCA,通过保留嵌入在高维空间中的局部几何结构,使模型更加准确。基于张量奇异值分解(t-SVD),我们引入了一种基于张量的广义乘子交替方向法(ADMM)算法,该算法可以求解所提出的用于HSI去噪的模型。在合成数据集和实际采集数据集上的实验都证明了该方法的有效性。