Suppr超能文献

用于高光谱图像去噪的图正则化张量鲁棒主成分分析

Graph-regularized tensor robust principal component analysis for hyperspectral image denoising.

作者信息

Nie Yongming, Chen Linsen, Zhu Hao, Du Sidan, Yue Tao, Cao Xun

出版信息

Appl Opt. 2017 Aug 1;56(22):6094-6102. doi: 10.1364/AO.56.006094.

Abstract

In this paper, we have developed a novel model that is named graph-regularized tensor robust principal component analysis (GTRPCA) for denoising hyperspectral images (HSIs). Incorporating spectral graph regularization into TRPCA makes the model more accurate by preserving local geometric structures embedded in a high-dimensional space. Based on tensor singular value decomposition (t-SVD), we introduce a general tensor-based altering direction method of multipliers (ADMM) algorithm which can solve the proposed model for denoising HSIs. Experiments on both the synthetic and real captured datasets have demonstrated the effectiveness of the proposed method.

摘要

在本文中,我们开发了一种名为图正则化张量鲁棒主成分分析(GTRPCA)的新型模型,用于对高光谱图像(HSI)进行去噪。将光谱图正则化纳入TRPCA,通过保留嵌入在高维空间中的局部几何结构,使模型更加准确。基于张量奇异值分解(t-SVD),我们引入了一种基于张量的广义乘子交替方向法(ADMM)算法,该算法可以求解所提出的用于HSI去噪的模型。在合成数据集和实际采集数据集上的实验都证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验