Suppr超能文献

MSED:一种用于临床睡眠分析的多模态睡眠事件检测模型。

MSED: A Multi-Modal Sleep Event Detection Model for Clinical Sleep Analysis.

出版信息

IEEE Trans Biomed Eng. 2023 Sep;70(9):2508-2518. doi: 10.1109/TBME.2023.3252368. Epub 2023 Aug 30.

Abstract

Clinical sleep analysis require manual analysis of sleep patterns for correct diagnosis of sleep disorders. However, several studies have shown significant variability in manual scoring of clinically relevant discrete sleep events, such as arousals, leg movements, and sleep disordered breathing (apneas and hypopneas). We investigated whether an automatic method could be used for event detection and if a model trained on all events (joint model) performed better than corresponding event-specific models (single-event models). We trained a deep neural network event detection model on 1653 individual recordings and tested the optimized model on 1000 separate hold-out recordings. F1 scores for the optimized joint detection model were 0.70, 0.63, and 0.62 for arousals, leg movements, and sleep disordered breathing, respectively, compared to 0.65, 0.61, and 0.60 for the optimized single-event models. Index values computed from detected events correlated positively with manual annotations (r = 0.73, r = 0.77, r = 0.78, respectively). We furthermore quantified model accuracy based on temporal difference metrics, which improved overall by using the joint model compared to single-event models. Our automatic model jointly detects arousals, leg movements and sleep disordered breathing events with high correlation with human annotations. Finally, we benchmark against previous state-of-the-art multi-event detection models and found an overall increase in F1 score with our proposed model despite a 97.5% reduction in model size.

摘要

临床睡眠分析需要对睡眠模式进行手动分析,以正确诊断睡眠障碍。然而,多项研究表明,在手动评分临床相关离散睡眠事件(如觉醒、腿部运动和睡眠呼吸障碍(呼吸暂停和低通气))方面存在显著差异。我们研究了自动方法是否可用于事件检测,以及在所有事件上训练的模型(联合模型)是否比相应的特定事件模型(单事件模型)表现更好。我们在 1653 个个体记录上训练了深度神经网络事件检测模型,并在 1000 个单独的保留记录上测试了优化后的模型。与优化后的单事件模型相比,优化后的联合检测模型的 F1 分数分别为 0.70、0.63 和 0.62,用于觉醒、腿部运动和睡眠呼吸障碍的 F1 分数分别为 0.65、0.61 和 0.60。从检测到的事件计算出的索引值与手动注释呈正相关(r = 0.73、r = 0.77、r = 0.78)。我们还根据时间差异指标来量化模型准确性,与单事件模型相比,使用联合模型总体上提高了准确性。我们的自动模型可以联合检测觉醒、腿部运动和睡眠呼吸障碍事件,与人工注释具有高度相关性。最后,我们与以前的多事件检测模型进行了基准测试,发现尽管模型大小减少了 97.5%,但我们提出的模型的 F1 得分总体上有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验