IEEE Trans Biomed Eng. 2022 Jun;69(6):2094-2104. doi: 10.1109/TBME.2021.3136753. Epub 2022 May 19.
Automatic detection and analysis of respiratory events in sleep using a single respiratoryeffort belt and deep learning.
Using 9,656 polysomnography recordings from the Massachusetts General Hospital (MGH), we trained a neural network (WaveNet) to detect obstructive apnea, central apnea, hypopnea and respiratory-effort related arousals. Performance evaluation included event-based analysis and apnea-hypopnea index (AHI) stratification. The model was further evaluated on a public dataset, the Sleep-Heart-Health-Study-1, containing 8,455 polysomnographic recordings.
For binary apnea event detection in the MGH dataset, the neural network obtained a sensitivity of 68%, a specificity of 98%, a precision of 65%, a F1-score of 67%, and an area under the curve for the receiver operating characteristics curve and precision-recall curve of 0.93 and 0.71, respectively. AHI prediction resulted in a mean difference of 0.41 ± 7.8 and a r of 0.90. For the multiclass task, we obtained varying performances: 84% of all labeled central apneas were correctly classified, whereas this metric was 51% for obstructive apneas, 40% for respiratory effort related arousals and 23% for hypopneas.
Our fully automated method can detect respiratory events and assess the AHI accurately. Differentiation of event types is more difficult and may reflect in part the complexity of human respiratory output and some degree of arbitrariness in the criteria used during manual annotation.
The current gold standard of diagnosing sleep-disordered breathing, using polysomnography and manual analysis, is time-consuming, expensive, and only applicable in dedicated clinical environments. Automated analysis using a single effort belt signal overcomes these limitations.
使用单一呼吸努力带和深度学习自动检测和分析睡眠中的呼吸事件。
我们使用来自马萨诸塞州综合医院(MGH)的 9656 份多导睡眠图记录,训练了一个神经网络(WaveNet)来检测阻塞性呼吸暂停、中枢性呼吸暂停、呼吸努力相关觉醒和呼吸暂停低通气指数(AHI)分层。性能评估包括基于事件的分析和呼吸暂停低通气指数(AHI)分层。该模型还在包含 8455 份多导睡眠图记录的公共数据集 Sleep-Heart-Health-Study-1 上进行了评估。
对于 MGH 数据集的二元呼吸暂停事件检测,神经网络获得了 68%的敏感性、98%的特异性、65%的精确性、67%的 F1 分数以及接收者操作特性曲线和精度-召回曲线下的面积分别为 0.93 和 0.71。AHI 预测的平均差值为 0.41±7.8,r 值为 0.90。对于多类任务,我们获得了不同的性能:84%的所有标记中枢性呼吸暂停都被正确分类,而阻塞性呼吸暂停的这一指标为 51%,呼吸努力相关觉醒为 40%,呼吸暂停低通气指数为 23%。
我们的全自动方法可以准确地检测呼吸事件并评估 AHI。事件类型的区分更加困难,这可能部分反映了人类呼吸输出的复杂性,以及在手动注释过程中使用的标准存在一定程度的任意性。
使用多导睡眠图和手动分析来诊断睡眠呼吸障碍的当前金标准既耗时又昂贵,并且仅适用于专用的临床环境。使用单一努力带信号进行自动分析克服了这些限制。