Suppr超能文献

用于运动想象 EEG 分类的具有定制特征的跨空间 CNN。

A Cross-Space CNN With Customized Characteristics for Motor Imagery EEG Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:1554-1565. doi: 10.1109/TNSRE.2023.3249831.

Abstract

The classification of motor imagery-electroencephalogram(MI-EEG)based brain-computer interface(BCI)can be used to decode neurological activities, which has been widely applied in the control of external devices. However, two factors still hinder the improvement of classification accuracy and robustness, especially in multi-class tasks. First, existing algorithms are based on a single space (measuring or source space). They suffer from the holistic low spatial resolution of the measuring space or the locally high spatial resolution information accessed from the source space, failing to provide holistic and high-resolution representations. Second, the subject specificity is not sufficiently characterized, resulting in the loss of personalized intrinsic information. Therefore, we propose a cross-space convolutional neural network (CS-CNN) with customized characteristics for four-class MI-EEG classification. This algorithm uses the modified customized band common spatial patterns (CBCSP) and duplex mean-shift clustering (DMSClustering) to express the specific rhythms and source distribution information in cross-space. At the same time, multi-view features from the time, frequency and space domains are extracted, connecting with CNN to fuse the characteristics from two spaces and classify them. MI-EEG was collected from 20 subjects. Lastly, the classification accuracy of the proposed is 96.05% with real MRI information and 94.79% without MRI in the private dataset. And the results in the BCI competition IV-2a show that CS-CNN outperforms the state-of-the-art algorithms, achieving an accuracy improvement of 1.98%, and a standard deviation reduction of 5.15%.

摘要

基于运动想象脑电(MI-EEG)的脑机接口(BCI)分类可用于解码神经活动,已广泛应用于外部设备控制。然而,有两个因素仍然阻碍着分类准确性和鲁棒性的提高,尤其是在多类任务中。首先,现有的算法基于单一空间(测量或源空间)。它们受到测量空间整体低空间分辨率或源空间中获取的局部高空间分辨率信息的限制,无法提供整体和高分辨率的表示。其次,对个体特异性的特征刻画不足,导致个性化内在信息的丢失。因此,我们提出了一种具有定制特征的跨空间卷积神经网络(CS-CNN),用于四类 MI-EEG 分类。该算法使用改进的定制带公共空间模式(CBCSP)和双相均值漂移聚类(DMSClustering)来表示跨空间中的特定节律和源分布信息。同时,从时间、频率和空间域提取多视图特征,与 CNN 连接,融合来自两个空间的特征并进行分类。MI-EEG 数据由 20 名受试者采集。最后,在私有数据集上,使用真实 MRI 信息的分类准确率为 96.05%,不使用 MRI 的分类准确率为 94.79%。在 BCI 竞赛 IV-2a 中的结果表明,CS-CNN 优于最先进的算法,准确性提高了 1.98%,标准差降低了 5.15%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验