Suppr超能文献

关键感知主成分分析

Pivotal-Aware Principal Component Analysis.

作者信息

Li Xuelong, Li Pei, Zhang Hongyuan, Zhu Kangjia, Zhang Rui

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):12201-12210. doi: 10.1109/TNNLS.2023.3252602. Epub 2024 Sep 3.

Abstract

A conventional principal component analysis (PCA) frequently suffers from the disturbance of outliers, and thus, spectra of extensions and variations of PCA have been developed. However, all the existing extensions of PCA derive from the same motivation, which aims to alleviate the negative effect of the occlusion. In this article, we design a novel collaborative-enhanced learning framework that aims to highlight the pivotal data points in contrast. As for the proposed framework, only a part of well-fitting samples are adaptively highlighted, which indicates more significance during training. Meanwhile, the framework can collaboratively reduce the disturbance of the polluted samples as well. In other words, two contrary mechanisms could work cooperatively under the proposed framework. Based on the proposed framework, we further develop a pivotal-aware PCA (PAPCA), which utilizes the framework to simultaneously augment positive samples and constrain negative ones by retaining the rotational invariance property. Accordingly, extensive experiments demonstrate that our model has superior performance compared with the existing methods that only focus on the negative samples.

摘要

传统的主成分分析(PCA)经常受到异常值的干扰,因此,人们开发了PCA的扩展和变体光谱。然而,现有的PCA扩展都源于相同的动机,即旨在减轻遮挡的负面影响。在本文中,我们设计了一种新颖的协作增强学习框架,旨在突出关键数据点。对于所提出的框架,仅自适应地突出显示一部分拟合良好的样本,这在训练期间显示出更大的重要性。同时,该框架还可以协同减少受污染样本的干扰。换句话说,在所提出的框架下,两种相反的机制可以协同工作。基于所提出的框架,我们进一步开发了一种关键感知主成分分析(PAPCA),它利用该框架通过保留旋转不变性属性同时增强正样本并约束负样本。因此,大量实验表明,与仅关注负样本的现有方法相比,我们的模型具有卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验