IEEE J Biomed Health Inform. 2023 May;27(5):2477-2488. doi: 10.1109/JBHI.2023.3244669. Epub 2023 May 4.
Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical diagnosis. However, it is time-consuming to obtain MR data of multi-contrasts and the long scanning time may bring unexpected physiological motion artifacts. To obtain MR images of higher quality within limited acquisition time, we propose an effective model to reconstruct images from under-sampled k-space data of one contrast by utilizing another fully-sampled contrast of the same anatomy. Specifically, multiple contrasts from the same anatomical section exhibit similar structures. Enlightened by the fact that co-support of an image provides an appropriate characterization of morphological structures, we develop a similarity regularization of the co-supports across multi-contrasts. In this case, the guided MRI reconstruction problem is naturally formulated as a mixed integer optimization model consisting of three terms, the data fidelity of k-space, smoothness-enforcing regularization, and co-support regularization. An effective algorithm is developed to solve this minimization model alternatively. In the numerical experiments, T2-weighted images are used as the guidance to reconstruct T1-weighted/T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) images and PD-weighted images are used as the guidance to reconstruct PDFS-weighted images, respectively, from their under-sampled k-space data. The experimental results demonstrate that the proposed model outperforms other state-of-the-art multi-contrast MRI reconstruction methods in terms of both quantitative metrics and visual performance at various sampling ratios.
多对比度磁共振成像(MRI)广泛应用于临床诊断。然而,获取多对比度的 MRI 数据需要花费大量时间,而且较长的扫描时间可能会带来意想不到的生理运动伪影。为了在有限的采集时间内获得更高质量的 MR 图像,我们提出了一种有效的模型,通过利用同一解剖结构的另一个完全采样对比度,从一个对比度的欠采样 k 空间数据中重建图像。具体来说,同一解剖部位的多个对比度表现出相似的结构。受图像的共支撑提供对形态结构的适当描述这一事实的启发,我们在多对比度之间开发了共支撑的相似性正则化。在这种情况下,引导 MRI 重建问题自然地表述为一个由三个项组成的混合整数优化模型,包括 k 空间的数据保真度、平滑度强制正则化和共支撑正则化。开发了一种有效的算法来交替求解这个最小化模型。在数值实验中,T2 加权图像被用作引导,从欠采样的 k 空间数据中重建 T1 加权/T2 加权-液体衰减反转恢复(T2-FLAIR)图像和 PD 加权图像,反之亦然。实验结果表明,所提出的模型在各种采样率下的定量指标和视觉性能方面均优于其他最先进的多对比度 MRI 重建方法。