Suppr超能文献

通过深度学习进行多对比度磁共振图像重建。

Reconstruction of multicontrast MR images through deep learning.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Med Phys. 2020 Mar;47(3):983-997. doi: 10.1002/mp.14006. Epub 2020 Jan 28.

Abstract

PURPOSE

Magnetic resonance (MR) imaging with a long scan time can lead to degraded images due to patient motion, patient discomfort, and increased costs. For these reasons, the role of rapid MR imaging is important. In this study, we propose the joint reconstruction of multicontrast brain MR images from down-sampled data to accelerate the data acquisition process using a novel deep-learning network.

METHODS

Twenty-one healthy volunteers (female/male = 7/14, age = 26 ± 4 yr, range 22-35 yr) and 16 postoperative patients (female/male = 7/9, age = 49 ± 9 yr, range 37-62 yr) were scanned on a 3T whole-body scanner for prospective and retrospective studies, respectively, using both T1-weighted spin-echo (SE) and T2-weighted fast spin-echo (FSE) sequences. We proposed a network which we term "X-net" to reconstruct both T1- and T2-weighted images from down-sampled images as well as a network termed "Y-net" which reconstructs T2-weighted images from highly down-sampled T2-weighted images and fully sampled T1-weighted images. Both X-net and Y-net are composed of two concatenated subnetworks. We investigate optimal sampling patterns, the optimal patch size for augmentation, and the optimal acceleration factors for network training. An additional Y-net combined with a generative adversarial network (GAN) was also implemented and tested to investigate the effects of the GAN on the Y-net performance. Single- and joint-reconstruction parallel-imaging and compressed-sensing algorithms along with a conventional U-net were also tested and compared with the proposed networks. For this comparison, the structural similarity (SSIM), normalized mean square error (NMSE), and Fréchet inception distance (FID) were calculated between the outputs of the networks and fully sampled images. The statistical significance of the performance was evaluated by assessing the interclass correlation and in paired t-tests.

RESULTS

The outputs from the two concatenated subnetworks were closer to the fully sampled images compared to those from one subnetwork, with this result showing statistical significance. Uniform down-sampling led to a statically significant improvement in the image quality compared to random or central down-sampling patterns. In addition, the proposed networks provided higher SSIM and NMSE values than U-net, compressed-sensing, and parallel-imaging algorithms, all at statistically significant levels. The GAN-based Y-net showed a better FID and more realistic images compared to a non-GAN-based Y-net. The performance capabilities of the networks were similar between normal subjects and patients.

CONCLUSIONS

The proposed X-net and Y-net effectively reconstructed full images from down-sampled images, outperforming the conventional parallel-imaging, compressed-sensing and U-net methods and providing more realistic images in combination with a GAN. The developed networks potentially enable us to accelerate multicontrast anatomical MR imaging in routine clinical studies including T1-and T2-weighted imaging.

摘要

目的

由于患者运动、不适和成本增加,磁共振(MR)成像的长时间扫描会导致图像质量下降。出于这些原因,快速 MR 成像的作用很重要。在这项研究中,我们提出了一种新的深度学习网络,通过从下采样数据联合重建多对比度脑 MR 图像来加速数据采集过程。

方法

21 名健康志愿者(女性/男性=7/14,年龄 26±4 岁,范围 22-35 岁)和 16 名术后患者(女性/男性=7/9,年龄 49±9 岁,范围 37-62 岁)分别在 3T 全身扫描仪上进行前瞻性和回顾性研究,分别使用 T1 加权自旋回波(SE)和 T2 加权快速自旋回波(FSE)序列。我们提出了一个名为“X-net”的网络来从下采样图像重建 T1 和 T2 加权图像,以及一个名为“Y-net”的网络来从高度下采样的 T2 加权图像和完全采样的 T1 加权图像重建 T2 加权图像。X-net 和 Y-net 均由两个串联的子网组成。我们研究了最优的采样模式、用于扩充的最优补丁大小以及网络训练的最优加速因子。还实现并测试了一个额外的结合生成对抗网络(GAN)的 Y-net,以研究 GAN 对 Y-net 性能的影响。还测试并比较了单重建和联合重建的并行成像和压缩感知算法以及传统的 U-net。为了进行比较,在网络输出和完全采样图像之间计算结构相似性(SSIM)、归一化均方误差(NMSE)和 Fréchet 初始距离(FID)。通过评估组间相关和配对 t 检验来评估性能的统计学意义。

结果

与一个子网的输出相比,两个串联子网的输出更接近完全采样图像,这一结果具有统计学意义。与随机或中心下采样模式相比,均匀下采样导致图像质量有统计学意义的提高。此外,与 U-net、压缩感知和并行成像算法相比,所提出的网络提供了更高的 SSIM 和 NMSE 值,且均具有统计学意义。基于 GAN 的 Y-net 与非基于 GAN 的 Y-net 相比,具有更好的 FID 和更逼真的图像。网络的性能能力在正常受试者和患者之间相似。

结论

所提出的 X-net 和 Y-net 可有效地从下采样图像重建全图,优于传统的并行成像、压缩感知和 U-net 方法,并结合 GAN 提供更逼真的图像。所开发的网络有可能使我们能够在包括 T1 和 T2 加权成像在内的常规临床研究中加速多对比度解剖磁共振成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验