IEEE Trans Neural Syst Rehabil Eng. 2023;31:1670-1679. doi: 10.1109/TNSRE.2023.3255639.
Early diagnosis of infant cerebral palsy (CP) is very important for infant health. In this paper, we present a novel training-free method to quantify infant spontaneous movements for predicting CP.
Unlike other classification methods, our method turns the assessment into a clustering task. First, the joints of the infant are extracted by the current pose estimation algorithm, and the skeleton sequence is segmented into multiple clips through a sliding window. Then we cluster the clips and quantify infant CP by the number of cluster classes.
The proposed method was tested on two datasets, and achieved state-of-the-arts (SOTAs) on both datasets using the same parameters. What's more, our method is interpretable with visualized results.
The proposed method can quantify abnormal brain development in infants effectively and be used in different datasets without training.
Limited by small samples, we propose a training-free method for quantifying infant spontaneous movements. Unlike other binary classification methods, our work not only enables continuous quantification of infant brain development, but also provides interpretable conclusions by visualizing the results. The proposed spontaneous movement assessment method significantly advances SOTAs in automatically measuring infant health.
婴儿脑性瘫痪(CP)的早期诊断对婴儿健康非常重要。本文提出了一种新的无训练方法,用于量化婴儿自发性运动以预测 CP。
与其他分类方法不同,我们的方法将评估转变为聚类任务。首先,通过当前的姿势估计算法提取婴儿的关节,并通过滑动窗口将骨骼序列分割成多个片段。然后,我们对片段进行聚类,并通过聚类类别的数量来量化婴儿 CP。
该方法在两个数据集上进行了测试,使用相同的参数在两个数据集上均达到了最先进的水平(SOTA)。更重要的是,我们的方法具有可解释的可视化结果。
该方法可以有效地量化婴儿大脑发育异常,并且可以在不同的数据集上使用而无需训练。
受小样本的限制,我们提出了一种用于量化婴儿自发性运动的无训练方法。与其他二分类方法不同,我们的工作不仅可以对婴儿大脑发育进行连续量化,还可以通过可视化结果提供可解释的结论。所提出的自发性运动评估方法在自动测量婴儿健康方面显著提高了 SOTA。