Suppr超能文献

人工智能能在 3 个月大的婴儿身上检测到对环境的功能关系的意识。

Artificial intelligence detects awareness of functional relation with the environment in 3 month old babies.

机构信息

School of Computer Science and Technology, University of Bedfordshire, Luton, LU1 3JU, UK.

The Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, UK.

出版信息

Sci Rep. 2024 Jul 6;14(1):15580. doi: 10.1038/s41598-024-66312-6.

Abstract

A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (i.e., tethering an infant's foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism~world connection.

摘要

最近的一项实验通过操纵婴儿与环境中物体的功能连接(即把婴儿的脚拴在彩色移动玩具上),探究了有目的的行为是如何在生命早期出现的。这里使用来自多个婴儿关节的 Vicon 运动捕捉数据创建关节位移直方图 (HJD),为 3D 婴儿空间轨迹生成基于姿势的描述符。使用 HJD 作为输入,机器和深度学习系统的任务是从运动数据片段中分类出实验状态。测试的架构包括 k-最近邻 (kNN)、线性判别分析 (LDA)、全连接网络 (FCNet)、1D-卷积神经网络 (1D-Conv)、1D-胶囊网络 (1D-CapsNet)、2D-卷积和 2D-胶囊网络。滑动窗口场景用于时间分析,以搜索与功能上下文相关的婴儿运动中的拓扑变化。kNN 和 LDA 仅使用单关节特征即可实现更高的分类准确性,而深度学习方法,特别是 2D-胶囊网络,在使用全身特征时可实现更高的准确性。对于测试的每种 AI 架构,脚部活动的测量值在不同的实验阶段都显示出最明显和一致的模式变化(反映在最高的分类准确率上),这表明与世界的交互对生物体与世界连接部位的婴儿行为影响最大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cf/11227524/c9225466f169/41598_2024_66312_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验