Suppr超能文献

集成多尺度域自适应YOLO

Integrated Multiscale Domain Adaptive YOLO.

作者信息

Hnewa Mazin, Radha Hayder

出版信息

IEEE Trans Image Process. 2023;32:1857-1867. doi: 10.1109/TIP.2023.3255106. Epub 2023 Mar 22.

Abstract

The area of domain adaptation has been instrumental in addressing the domain shift problem encountered by many deep learning applications. This problem arises due to the difference between the distributions of source data used for training in comparison with target data used during realistic testing scenarios. In this paper, we introduce a novel MultiScale Domain Adaptive YOLO (MS-DAYOLO) framework that employs multiple domain adaptation paths and corresponding domain classifiers at different scales of the YOLOv4 object detector. Building on our baseline multiscale DAYOLO framework, we introduce three novel deep learning architectures for a Domain Adaptation Network (DAN) that generates domain-invariant features. In particular, we propose a Progressive Feature Reduction (PFR), a Unified Classifier (UC), and an Integrated architecture. We train and test our proposed DAN architectures in conjunction with YOLOv4 using popular datasets. Our experiments show significant improvements in object detection performance when training YOLOv4 using the proposed MS-DAYOLO architectures and when tested on target data for autonomous driving applications. Moreover, MS-DAYOLO framework achieves an order of magnitude real-time speed improvement relative to Faster R-CNN solutions while providing comparable object detection performance.

摘要

领域自适应领域在解决许多深度学习应用中遇到的领域转移问题方面发挥了重要作用。这个问题的出现是由于用于训练的源数据分布与实际测试场景中使用的目标数据分布存在差异。在本文中,我们介绍了一种新颖的多尺度域自适应YOLO(MS-DAYOLO)框架,该框架在YOLOv4目标检测器的不同尺度上采用了多个域自适应路径和相应的域分类器。在我们的基线多尺度DAYOLO框架的基础上,我们为生成域不变特征的域自适应网络(DAN)引入了三种新颖的深度学习架构。具体而言,我们提出了渐进特征约简(PFR)、统一分类器(UC)和集成架构。我们使用流行的数据集结合YOLOv4对我们提出的DAN架构进行训练和测试。我们的实验表明,当使用所提出的MS-DAYOLO架构训练YOLOv4并在自动驾驶应用的目标数据上进行测试时,目标检测性能有显著提高。此外,MS-DAYOLO框架相对于Faster R-CNN解决方案实现了数量级的实时速度提升,同时提供了可比的目标检测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验