College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China.
Sensors (Basel). 2020 Jun 26;20(12):3606. doi: 10.3390/s20123606.
Deep neural networks have been successfully applied in domain adaptation which uses the labeled data of source domain to supplement useful information for target domain. Deep Adaptation Network (DAN) is one of these efficient frameworks, it utilizes Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to align the feature distribution in a reproducing kernel Hilbert space. However, DAN does not perform very well in feature level transfer, and the assumption that source and target domain share classifiers is too strict in different adaptation scenarios. In this paper, we further improve the adaptability of DAN by incorporating Domain Confusion (DC) and Classifier Adaptation (CA). To achieve this, we propose a novel domain adaptation method named CDAN. Our approach first enables Domain Confusion (DC) by using a domain discriminator for adversarial training. For Classifier Adaptation (CA), a residual block is added to the source domain classifier in order to learn the difference between source classifier and target classifier. Beyond validating our framework on the standard domain adaptation dataset office-31, we also introduce and evaluate on the Comprehensive Cars (CompCars) dataset, and the experiment results demonstrate the effectiveness of the proposed framework CDAN.
深度神经网络已成功应用于领域自适应中,该方法使用源域的标记数据来补充目标域的有用信息。深度自适应网络 (DAN) 就是其中一种有效的框架,它利用多核最大均值差异 (MK-MMD) 在再生核希尔伯特空间中对齐特征分布。然而,DAN 在特征级转移方面表现不佳,并且在不同的适应场景中,源域和目标域共享分类器的假设过于严格。在本文中,我们通过引入域混淆 (DC) 和分类器自适应 (CA) 进一步提高了 DAN 的适应性。为此,我们提出了一种名为 CDAN 的新的领域自适应方法。我们的方法首先通过使用域判别器进行对抗训练来实现域混淆 (DC)。对于分类器自适应 (CA),我们在源域分类器中添加了一个残差块,以学习源分类器和目标分类器之间的差异。除了在标准领域自适应数据集 office-31 上验证我们的框架外,我们还在 Comprehensive Cars (CompCars) 数据集上进行了介绍和评估,实验结果证明了所提出的框架 CDAN 的有效性。