Suppr超能文献

mGluR4 的激活可挽救脆性 X 综合征小鼠模型中的平行纤维突触传递和 LTP、运动学习和社交行为。

The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome.

机构信息

Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.

Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.

出版信息

Mol Autism. 2023 Apr 7;14(1):14. doi: 10.1186/s13229-023-00547-4.

Abstract

BACKGROUND

Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment.

METHODS

We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4.

RESULTS

We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice.

LIMITATIONS

We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells.

CONCLUSIONS

Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.

摘要

背景

脆性 X 综合征(FXS)是最常见的遗传性智力障碍,由脆性 X 信使核糖核蛋白(FMRP)表达缺失引起。FMRP 是一种 RNA 结合蛋白,可负调控参与动作电位特性、钙稳态和神经递质释放的许多突触后和突触前蛋白的表达。FXS 患者和缺乏 FMRP 的小鼠表现出多种行为改变,包括运动学习缺陷,目前尚无针对这种缺陷的特定治疗方法。

方法

我们进行了电子显微镜、全细胞膜片钳电生理学和行为学实验,以研究 Fmr1KO 小鼠运动学习缺陷的突触机制以及 mGluR4 的正变构调节剂的治疗潜力。

结果

我们发现,小脑平行纤维与浦肯野细胞 Fmr1KO 突触的突触小泡对接增强与异步释放增强有关,这不仅阻止了进一步的增强,而且还损害了β肾上腺素能受体介导的平行纤维长时程增强(PF-LTP)。降低细胞外 Ca 浓度可恢复易释放池(RRP)大小、基础突触传递、β肾上腺素能受体介导的增强以及 PF-LTP。有趣的是,VU 0155041,一种选择性 mGluR4 的正变构调节剂,也可恢复雄性和雌性小鼠的 RRP 大小和 PF-LTP。此外,当注射到 Fmr1KO 雄性小鼠体内时,VU 0155041 可改善其熟练抓握、经典眨眼条件反射和前庭眼反射(VOR)测试中的运动学习,以及改善这些小鼠的社交行为改变。

局限性

我们不能排除通过系统给予 VU0155041 激活 mGluR4s 还可以影响其他脑区。需要进一步研究以确定小脑颗粒细胞中 mGluR4 的特异性激活的效果。

结论

我们的研究表明,突触小泡(SV)对接的增加可能导致 Fmr1KO 小鼠的 PF-LTP 和运动学习丧失以及社交缺陷,而通过药理学激活 mGluR4 逆转这些变化可能为 FXS 的运动学习和社交缺陷提供治疗缓解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe1/10082511/8fc97338896c/13229_2023_547_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验