Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040 Madrid, Spain
Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain.
J Neurosci. 2020 Nov 4;40(45):8604-8617. doi: 10.1523/JNEUROSCI.0716-20.2020. Epub 2020 Oct 12.
The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca-induced increase in presynaptic cAMP that is mediated by Ca-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by β-adrenergic receptors (βARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that βARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these βARs occluded PF-PC LTP, while the β1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the βAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP. G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to β-adrenergic receptor (βAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by βARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this βAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of βARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.
第二信使 cAMP 是突触可塑性的重要决定因素,与增强神经递质释放有关。平行纤维 (PF)-浦肯野细胞 (PC) 突触的长时程增强 (LTP) 依赖于 Ca 诱导的突触前 cAMP 增加,该增加由 Ca 敏感的腺苷酸环化酶介导。然而,这些事件中涉及的 cAMP 的上游信号和下游靶标仍知之甚少。尽管去甲肾上腺素能末梢在 PF-PC 接触处并置,但尚不清楚β-肾上腺素能受体 (βAR) 产生的 cAMP 是否是 PF-PC LTP 所必需的,尽管去甲肾上腺素能末梢在 PF-PC 接触处并置。cAMP 直接激活的鸟嘌呤核苷酸交换蛋白 [Epac 蛋白 (Epac1-2)] 是蛋白激酶 A (PKA) 的替代 cAMP 靶标,Epac2 在小脑丰富。然而,Epac 蛋白是否参与 PF-PC LTP 尚不清楚。免疫电镜显示,βAR 在 PF 末梢表达。此外,通过其激动剂异丙肾上腺素激活这些受体增强了来自两性小鼠小脑切片中的突触传递,该效应对 PKA 抑制剂 (H-89、KT270) 不敏感,但被 Epac 抑制剂 ESI 05 阻断。有趣的是,这些βAR 的预先激活阻断了 PF-PC LTP,而 β1AR 拮抗剂美托洛尔阻断了 PF-PC LTP,在 小鼠中也不存在。PF-PC LTP 与突触小泡易释放池 (RRP) 的大小增加有关,这与小脑切片中异丙肾上腺素诱导的囊泡 docking 增加一致。因此,βAR 介导的释放机制的调节以及随后 RRP 大小的增加有助于 PF-PC LTP。G 蛋白偶联受体调节释放机制,导致突触传递的持久变化,从而影响突触可塑性。然而,β-肾上腺素能受体 (βAR) 激活引起的突触反应的机制仍知之甚少。对于由 βAR 驱动的神经递质释放增强,增加了用于胞吐作用的突触小泡的数量。这种效应不是由经典的蛋白激酶 A 途径介导的,而是通过 cAMP 直接激活鸟嘌呤核苷酸交换蛋白 Epac 介导的。有趣的是,这种通过 Epac 的 βAR 信号参与小脑颗粒细胞到浦肯野细胞突触的长时程增强。因此,βAR 的药理学激活调节突触可塑性,并为控制这种现象提供了治疗机会。