Suppr超能文献

UArch:一种具有异构三核架构的超分辨率处理器,适用于 U-Net 网络的工作负载。

UArch: A Super-Resolution Processor With Heterogeneous Triple-Core Architecture for Workloads of U-Net Networks.

出版信息

IEEE Trans Biomed Circuits Syst. 2023 Jun;17(3):633-647. doi: 10.1109/TBCAS.2023.3261060. Epub 2023 Jul 12.

Abstract

High-resolution medical images are of critical significance to improve disease diagnosis. Limited by the camera and power of medical devices, medical images often have very low resolution. For example, wireless capsule endoscopes, often used to diagnose diseases of the small bowel, can only capture low-resolution endoscopic images. The existing super-resolution (SR) networks perform exceptionally well in recovering high-resolution images, but they are computationally expensive and require high bandwidth, which can result in unacceptable latency and bandwidth requirements for embedded medical devices. In this paper, we propose a U-Net-based SR (USR) network structure and an SR processor named UArch. The USR-s, which is the lightweight version of USR, has an SR performance of 42.68 dB for ×2 scale SR. The USR-s has 0.3 dB higher PSNR (peak signal-to-noise ratio) than the SR algorithm, which is often used in recent SR hardware. Based on well-designed strategies, including heterogeneous triple-core architecture, fine-grained on-chip memory allocation, out-of-order execution, and sub-tensor-based processing flow, the UArch, designed for U-Net networks, can fulfill ×2, ×3, and ×4 scale SR by deploying USR-s, achieving high throughput of 60 fps and low latency of 25 ms for ×2 scale 1920 × 1080 output image SR at 156 MHz. The UArch achieves high energy efficiency which is 2264.5 GOPS/W when synthesized and evaluated under the TSMC 28 nm process and which is 199.3 GOPS/W when implemented on Xilinx ZCU111. Our SR processor is capable of reconstructing high-quality endoscopic images and is more efficient than the previous state-of-the-art SR processors.

摘要

高分辨率医学图像对于提高疾病诊断至关重要。受限于相机和医疗设备的功率,医学图像的分辨率往往非常低。例如,常用于诊断小肠疾病的无线胶囊内窥镜只能捕获低分辨率的内窥镜图像。现有的超分辨率 (SR) 网络在恢复高分辨率图像方面表现出色,但计算成本高,需要高带宽,这对于嵌入式医疗设备来说可能导致无法接受的延迟和带宽要求。在本文中,我们提出了一种基于 U-Net 的 SR (USR) 网络结构和一个名为 UArch 的 SR 处理器。USR-s 是 USR 的轻量级版本,其 ×2 尺度 SR 的 SR 性能为 42.68 dB。USR-s 的 PSNR(峰值信噪比)比最近的 SR 硬件中常用的 SR 算法高 0.3 dB。基于精心设计的策略,包括异构三核架构、细粒度片上内存分配、乱序执行和基于子张量的处理流程,UArch 专为 U-Net 网络设计,可以通过部署 USR-s 实现 ×2、×3 和 ×4 尺度的 SR,在 156 MHz 下实现 60 fps 的高吞吐量和 25 ms 的低延迟,用于输出图像 SR 的 ×2 尺度 1920×1080。UArch 的综合和评估在 TSMC 28nm 工艺下的能效为 2264.5 GOPS/W,在 Xilinx ZCU111 上实现时的能效为 199.3 GOPS/W,达到了很高的能效。我们的 SR 处理器能够重建高质量的内窥镜图像,并且比以前的最先进的 SR 处理器更高效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验