Zheng Yingjie, Zhen Bowen, Chen Aichi, Qi Fulang, Hao Xiaohan, Qiu Bensheng
Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Department of Radiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
Med Phys. 2020 Jul;47(7):3013-3022. doi: 10.1002/mp.14152. Epub 2020 Apr 27.
Spatial resolution is an important parameter for magnetic resonance imaging (MRI). High-resolution MR images provide detailed information and benefit subsequent image analysis. However, higher resolution MR images come at the expense of longer scanning time and lower signal-to-noise ratios (SNRs). Using algorithms to improve image resolution can mitigate these limitations. Recently, some convolutional neural network (CNN)-based super-resolution (SR) algorithms have flourished on MR image reconstruction. However, most algorithms usually adopt deeper network structures to improve the performance.
In this study, we propose a novel hybrid network (named HybridNet) to improve the quality of SR images by increasing the width of the network. Specifically, the proposed hybrid block combines a multipath structure and variant dense blocks to extract abundant features from low-resolution images. Furthermore, we fully exploit the hierarchical features from different hybrid blocks to reconstruct high-quality images.
All SR algorithms are evaluated using three MR image datasets and the proposed HybridNet outperformed the comparative methods with peak a signal-to-noise ratio (PSNR) of 42.12 ± 0.92 dB, 38.60 ± 2.46 dB, 35.17 ± 2.96 dB and a structural similarity index (SSIM) of 0.9949 ± 0.0015, 0.9892 ± 0.0034, 0.9740 ± 0.0064, respectively. Besides, our proposed network can reconstruct high-quality images on an unseen MR dataset with PSNR of 33.27 ± 1.56 and SSIM of 0.9581 ± 0.0068.
The results demonstrate that HybridNet can reconstruct high-quality SR images from degraded MR images and has good generalization ability. It also can be leveraged to assist the task of image analysis or processing.
空间分辨率是磁共振成像(MRI)的一个重要参数。高分辨率磁共振图像提供详细信息,有利于后续的图像分析。然而,更高分辨率的磁共振图像是以更长的扫描时间和更低的信噪比(SNR)为代价的。使用算法来提高图像分辨率可以减轻这些限制。最近,一些基于卷积神经网络(CNN)的超分辨率(SR)算法在磁共振图像重建方面蓬勃发展。然而,大多数算法通常采用更深的网络结构来提高性能。
在本研究中,我们提出了一种新颖的混合网络(名为HybridNet),通过增加网络宽度来提高超分辨率图像的质量。具体而言,所提出的混合块结合了多路径结构和可变密集块,以从低分辨率图像中提取丰富的特征。此外,我们充分利用来自不同混合块的分层特征来重建高质量图像。
所有超分辨率算法均使用三个磁共振图像数据集进行评估,所提出的HybridNet在峰值信噪比(PSNR)分别为42.12±0.92dB、38.60±2.46dB、35.17±2.96dB以及结构相似性指数(SSIM)分别为0.9949±0.0015、0.9892±0.0034、0.9740±0.0064方面优于比较方法。此外,我们提出的网络能够在一个未见过的磁共振数据集上重建高质量图像,PSNR为33.27±1.56,SSIM为0.9581±0.0068。
结果表明,HybridNet能够从退化的磁共振图像中重建高质量的超分辨率图像,并且具有良好的泛化能力。它还可用于辅助图像分析或处理任务。