Suppr超能文献

利用磁共振成像中估计的低频k空间数据实现快速单图像超分辨率

Fast single image super-resolution using estimated low-frequency k-space data in MRI.

作者信息

Luo Jianhua, Mou Zhiying, Qin Binjie, Li Wanqing, Yang Feng, Robini Marc, Zhu Yuemin

机构信息

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 200240, China.

China National Aeronautical Radio Electronics Research Institute, Shanghai 200233, China.

出版信息

Magn Reson Imaging. 2017 Jul;40:1-11. doi: 10.1016/j.mri.2017.03.008. Epub 2017 Mar 31.

Abstract

PURPOSE

Single image super-resolution (SR) is highly desired in many fields but obtaining it is often technically limited in practice. The purpose of this study was to propose a simple, rapid and robust single image SR method in magnetic resonance (MR) imaging (MRI).

METHODS

The idea is based on the mathematical formulation of the intrinsic link in k-space between a given (modulus) low-resolution (LR) image and the desired SR image. The method consists of two steps: 1) estimating the low-frequency k-space data of the desired SR image from a single LR image; 2) reconstructing the SR image using the estimated low-frequency and zero-filled high-frequency k-space data. The method was evaluated on digital phantom images, physical phantom MR images and real brain MR images, and compared with existing SR methods.

RESULTS

The proposed SR method exhibited a good robustness by reaching a clearly higher PSNR (25.77dB) and SSIM (0.991) averaged over different noise levels in comparison with existing edge-guided nonlinear interpolation (EGNI) (PSNR=23.78dB, SSIM=0.983), zero-filling (ZF) (PSNR=24.09dB, SSIM=0.985) and total variation (TV) (PSNR=24.54dB, SSIM=0.987) methods while presenting the same order of computation time as the ZF method but being much faster than the EGNI or TV method. The average PSNR or SSIM over different slice images of the proposed method (PSNR=26.33 dB or SSIM=0.955) was also higher than the EGNI (PSNR=25.07dB or SSIM=0.952), ZF (PSNR=24.97dB or SSIM=0.950) and TV (PSNR=25.70dB or SSIM=0.953) methods, demonstrating its good robustness to variation in anatomical structure of the images. Meanwhile, the proposed method always produced less ringing artifacts than the ZF method, gave a clearer image than the EGNI method, and did not exhibit any blocking effect presented in the TV method. In addition, the proposed method yielded the highest spatial consistency in the inter-slice dimension among the four methods.

CONCLUSIONS

This study proposed a fast, robust and efficient single image SR method with high spatial consistency in the inter-slice dimension for clinical MR images by estimating the low-frequency k-space data of the desired SR image from a single spatial modulus LR image.

摘要

目的

单图像超分辨率(SR)在许多领域都有很高的需求,但在实际中获取它往往受到技术限制。本研究的目的是在磁共振(MR)成像(MRI)中提出一种简单、快速且稳健的单图像SR方法。

方法

该方法基于给定(模量)低分辨率(LR)图像与所需SR图像在k空间中的内在联系的数学公式。该方法包括两个步骤:1)从单个LR图像估计所需SR图像的低频k空间数据;2)使用估计的低频和零填充高频k空间数据重建SR图像。该方法在数字体模图像、物理体模MR图像和真实脑MR图像上进行了评估,并与现有的SR方法进行了比较。

结果

与现有的边缘引导非线性插值(EGNI)(PSNR = 23.78dB,SSIM = 0.983)、零填充(ZF)(PSNR = 24.09dB,SSIM = 0.985)和全变差(TV)(PSNR = 24.54dB,SSIM = 0.987)方法相比,所提出的SR方法在不同噪声水平下平均达到了明显更高的PSNR(25.77dB)和SSIM(0.991),表现出良好的稳健性,同时计算时间与ZF方法相当,但比EGNI或TV方法快得多。所提出方法在不同切片图像上的平均PSNR或SSIM(PSNR = 26.33 dB或SSIM = 0.955)也高于EGNI(PSNR = 25.07dB或SSIM = 0.952)、ZF(PSNR = 24.97dB或SSIM = 0.950)和TV(PSNR = 25.70dB或SSIM = 0.953)方法,证明了其对图像解剖结构变化具有良好的稳健性。同时,所提出的方法产生的振铃伪影总是比ZF方法少,比EGNI方法得到的图像更清晰,并且没有表现出TV方法中出现的任何块状效应。此外,在所提出的方法在四种方法中切片间维度上具有最高的空间一致性。

结论

本研究通过从单个空间模量LR图像估计所需SR图像的低频k空间数据,为临床MR图像提出了一种快速、稳健且高效的单图像SR方法,在切片间维度上具有高空间一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验