Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
MR Solutions Americas LLC, Acton (MA), USA.
J Appl Clin Med Phys. 2023 Jun;24(6):e13986. doi: 10.1002/acm2.13986. Epub 2023 Apr 9.
To define an optimal set of b-values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model.
Simulations of diffusion signals were performed to define an optimal set of b-values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b-values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one.
The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b-values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm ), showing significant differences and increased precision on D and f estimates with respect to simulations with a non-optimized b-values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b-values array, with differences between the optimal set of b-values and a clinical non-optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10 mm /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10 mm /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10 mm /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10 mm /s) for white matter/gray matter/Gross Tumor Volume in patients with skull-base chordoma tumor.
The definition of an optimal b-values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.
定义最佳的 b 值组合,以通过分段体素内不相干运动(IVIM)模型准确推导出脑扩散 MRI 参数。
通过依赖于优化程序来模拟扩散信号,该优化程序通过最小化使用分段拟合程序计算的估计 IVIM 参数的总相对误差,从而针对不同的灌注状态定义最佳的 b 值组合。然后,在健康受试者和颅底脊索瘤患者中获得最佳 b 值组合,以比较优化方案与临床方案。
采用最佳的 13 个 b 值(0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm )时,模拟的总相对误差降低了约 40%,表明 D 和 f 的估计值与非最佳 b 值组合的模拟相比具有显著差异和更高的精度。同样,体内采集显示 IVIM 参数与 b 值数组有关,最佳 b 值组合与临床非优化采集之间存在差异。IVIM 参数与文献值相匹配,白质/灰质志愿者的 D(0.679/0.701 [0.022/0.008] ·10 mm/s)、f(5.49/5.80 [0.70/1.14]%)和 D*(8.25/7.67 [0.92/0.83] ·10 mm/s)中位数[四分位距]估计值,以及 D(0.709/0.715/1.06 [0.035/0.023/0.271] ·10 mm/s)、f(7.08/7.84/21.54 [1.20/1.06/6.05]%)和 D*(10.85/11.84/2.32 [1.38/2.32/4.94] ·10 mm/s)在颅底脊索瘤患者的白质/灰质/大体肿瘤体积。
最佳 b 值组合的定义可以提高定量 IVIM 参数的估计精度。这使得可以建立一种优化方法,该方法可用于脑内的 IVIM 研究。