Suppr超能文献

基于分段体素内不相干运动(IVIM)模型优化脑扩散 MRI 的 b 值方案。

Optimizing b-values schemes for diffusion MRI of the brain with segmented Intravoxel Incoherent Motion (IVIM) model.

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

MR Solutions Americas LLC, Acton (MA), USA.

出版信息

J Appl Clin Med Phys. 2023 Jun;24(6):e13986. doi: 10.1002/acm2.13986. Epub 2023 Apr 9.

Abstract

PURPOSE

To define an optimal set of b-values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model.

METHODS

Simulations of diffusion signals were performed to define an optimal set of b-values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b-values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one.

RESULTS

The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b-values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm ), showing significant differences and increased precision on D and f estimates with respect to simulations with a non-optimized b-values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b-values array, with differences between the optimal set of b-values and a clinical non-optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10 mm /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10 mm /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10 mm /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10 mm /s) for white matter/gray matter/Gross Tumor Volume in patients with skull-base chordoma tumor.

CONCLUSIONS

The definition of an optimal b-values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.

摘要

目的

定义最佳的 b 值组合,以通过分段体素内不相干运动(IVIM)模型准确推导出脑扩散 MRI 参数。

方法

通过依赖于优化程序来模拟扩散信号,该优化程序通过最小化使用分段拟合程序计算的估计 IVIM 参数的总相对误差,从而针对不同的灌注状态定义最佳的 b 值组合。然后,在健康受试者和颅底脊索瘤患者中获得最佳 b 值组合,以比较优化方案与临床方案。

结果

采用最佳的 13 个 b 值(0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm )时,模拟的总相对误差降低了约 40%,表明 D 和 f 的估计值与非最佳 b 值组合的模拟相比具有显著差异和更高的精度。同样,体内采集显示 IVIM 参数与 b 值数组有关,最佳 b 值组合与临床非优化采集之间存在差异。IVIM 参数与文献值相匹配,白质/灰质志愿者的 D(0.679/0.701 [0.022/0.008] ·10 mm/s)、f(5.49/5.80 [0.70/1.14]%)和 D*(8.25/7.67 [0.92/0.83] ·10 mm/s)中位数[四分位距]估计值,以及 D(0.709/0.715/1.06 [0.035/0.023/0.271] ·10 mm/s)、f(7.08/7.84/21.54 [1.20/1.06/6.05]%)和 D*(10.85/11.84/2.32 [1.38/2.32/4.94] ·10 mm/s)在颅底脊索瘤患者的白质/灰质/大体肿瘤体积。

结论

最佳 b 值组合的定义可以提高定量 IVIM 参数的估计精度。这使得可以建立一种优化方法,该方法可用于脑内的 IVIM 研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a49/10243330/6de48a6fafcb/ACM2-24-e13986-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验