Suppr超能文献

胃癌差异表达基因的网络和功能分析为与疾病发病机制相关的新生物标志物提供了依据。

Network and functional analyses of differentially expressed genes in gastric cancer provide new biomarkers associated with disease pathogenesis.

机构信息

Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.

Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.

出版信息

J Egypt Natl Canc Inst. 2023 Apr 10;35(1):8. doi: 10.1186/s43046-023-00164-5.

Abstract

BACKGROUND

Gastric cancer is a dominant source of cancer-related death around the globe and a serious threat to human health. However, there are very few practical diagnostic approaches and biomarkers for the treatment of this complex disease.

METHODS

This study aimed to evaluate the association between differentially expressed genes (DEGs), which may function as potential biomarkers, and the diagnosis and treatment of gastric cancer (GC). We constructed a protein-protein interaction network from DEGs followed by network clustering. Members of the two most extensive modules went under the enrichment analysis. We introduced a number of hub genes and gene families playing essential roles in oncogenic pathways and the pathogenesis of gastric cancer. Enriched terms for Biological Process were obtained from the "GO" repository.

RESULTS

A total of 307 DEGs were identified between GC and their corresponding normal adjacent tissue samples in GSE63089 datasets, including 261 upregulated and 261 downregulated genes. The top five hub genes in the PPI network were CDK1, CCNB1, CCNA2, CDC20, and PBK. They are involved in focal adhesion formation, extracellular matrix remodeling, cell migration, survival signals, and cell proliferation. No significant survival result was found for these hub genes.

CONCLUSIONS

Using comprehensive analysis and bioinformatics methods, important key pathways and pivotal genes related to GC progression were identified, potentially informing further studies and new therapeutic targets for GC treatment.

摘要

背景

胃癌是全球癌症相关死亡的主要原因,也是人类健康的严重威胁。然而,对于这种复杂疾病,几乎没有实用的诊断方法和生物标志物。

方法

本研究旨在评估差异表达基因(DEGs)与胃癌(GC)的诊断和治疗之间的关联。我们从 DEGs 构建了一个蛋白质-蛋白质相互作用网络,然后进行网络聚类。两个最广泛模块的成员进行了富集分析。我们介绍了一些在致癌途径和胃癌发病机制中起关键作用的核心基因和基因家族。生物过程的富集术语从“GO”库中获得。

结果

在 GSE63089 数据集的 GC 与其相应的正常相邻组织样本之间共鉴定出 307 个 DEGs,包括 261 个上调和 261 个下调基因。PPI 网络中的前五个核心基因是 CDK1、CCNB1、CCNA2、CDC20 和 PBK。它们参与了焦点黏附形成、细胞外基质重塑、细胞迁移、生存信号和细胞增殖。这些核心基因没有显著的生存结果。

结论

使用综合分析和生物信息学方法,鉴定出与 GC 进展相关的重要关键途径和关键基因,为 GC 的治疗提供了进一步研究和新的治疗靶点的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验