Hein Oliver, Zangemeister Wolfgang
Neurological University Clinic Hamburg UKE, Germany.
J Eye Mov Res. 2017 Mar 13;10(1). doi: 10.16910/jemr.11.1.2.
Recent years have witnessed a remarkable growth in the way mathematics, informatics, and computer science can process data. In disciplines such as machine learning, pattern recognition, computer vision, computational neurology, molecular biology, information retrieval, etc., many new methods have been developed to cope with the ever increasing amount and complexity of the data. These new methods offer interesting possibilities for processing, classifying and interpreting eye-tracking data. The present paper exemplifies the application of topological arguments to improve the evaluation of eye-tracking data. The task of classifying raw eye-tracking data into saccades and fixations, with a single, simple as well as intuitive argument, described as coherence of spacetime, is discussed, and the hierarchical ordering of the fixations into dwells is shown. The method, namely identification by topological characteristics (ITop), is parameter-free and needs no pre-processing and post-processing of the raw data. The general and robust topological argument is easy to expand into complex settings of higher visual tasks, making it possible to identify visual strategies.
近年来,数学、信息学和计算机科学处理数据的方式有了显著增长。在机器学习、模式识别、计算机视觉、计算神经学、分子生物学、信息检索等学科中,已经开发了许多新方法来应对不断增加的数据量和复杂性。这些新方法为处理、分类和解释眼动追踪数据提供了有趣的可能性。本文举例说明了拓扑论证在改进眼动追踪数据评估中的应用。讨论了将原始眼动追踪数据分类为扫视和注视的任务,通过一个简单直观的论点,即时空连贯性来进行分类,并展示了注视到停留的层次排序。该方法,即通过拓扑特征识别(ITop),无需参数,无需对原始数据进行预处理和后处理。通用且稳健的拓扑论证易于扩展到更高视觉任务的复杂设置中,从而有可能识别视觉策略。