Franco-Moreno Anabel, Brown-Lavalle David, Rodríguez-Ramírez Nicolás, Muñoz-Roldán Candela, Rubio-Aguilera Ana Ignes, Campos-Arenas Maria, Muñoz-Rivas Nuria, Moya-Mateo Eva, Ruiz-Giardín José Manuel, Pardo-Guimerá Virginia, Ulla-Anes Mariano, Pedrero-Tomé Roberto, Torres-Macho Juan, Bustamante-Fermosel Ana
Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, Madrid, Spain.
Department of Radiology, Hospital Universitario Infanta Leonor-Virgen de la Torre, Madrid, Spain.
J Clin Transl Res. 2023 Feb 6;9(2):59-68. eCollection 2023 Apr 28.
We aimed to develop a clinical prediction model for pulmonary thrombosis (PT) diagnosis in hospitalized COVID-19 patients.
Non-intensive care unit hospitalized COVID-19 patients who underwent a computed tomography pulmonary angiogram (CTPA) for suspected PT were included in the study. Demographic, clinical, analytical, and radiological variables as potential factors associated with the presence of PT were selected. Multivariable Cox regression analysis to develop a score for estimating the pre-test probability of PT was performed. The score was internally validated by bootstrap analysis.
Among the 271 patients who underwent a CTPA, 132 patients (48.7%) had PT. Heart rate >100 bpm (OR = 4.63 [95% CI: 2.30-9.34]; < 0.001), respiratory rate >22 bpm (OR = 5.21 [95% CI: 2.00-13.54]; < 0.001), RALE score ≥4 (OR = 3.24 [95% CI: 1.66-6.32]; < 0.001), C-reactive protein (CRP) >100 mg/L (OR = 2.10 [95% CI: 0.95-4.63]; = 0.067), and D-dimer >3.000 ng/mL (OR = 6.86 [95% CI: 3.54-13.28]; < 0.001) at the time of suspected PT were independent predictors of thrombosis. Using these variables, we constructed a nomogram (CRP, Heart rate, D-dimer, RALE score, and respiratory rate [CHEDDAR score]) for estimating the pre-test probability of PT. The score showed a high predictive accuracy (area under the receiver-operating characteristics curve = 0.877; 95% CI: 0.83-0.92). A score lower than 182 points on the nomogram confers a low probability for PT with a negative predictive value of 92%.
CHEDDAR score can be used to estimate the pre-test probability of PT in hospitalized COVID-19 patients outside the intensive care unit.
Developing a new clinical prediction model for PT diagnosis in COVID-19 may help in the triage of patients, and limit unnecessary exposure to radiation and the risk of nephrotoxicity due to iodinated contrast.
我们旨在开发一种用于诊断住院COVID-19患者肺血栓形成(PT)的临床预测模型。
本研究纳入了因疑似PT而接受计算机断层扫描肺动脉造影(CTPA)的非重症监护病房住院COVID-19患者。选择人口统计学、临床、分析和放射学变量作为与PT存在相关的潜在因素。进行多变量Cox回归分析以制定一个用于估计PT预测试概率的评分。该评分通过自举分析进行内部验证。
在271例接受CTPA的患者中,132例(48.7%)患有PT。疑似PT时心率>100次/分钟(OR = 4.63 [95% CI:2.30 - 9.34];P < 0.001)、呼吸频率>22次/分钟(OR = 5.21 [95% CI:2.00 - 13.54];P < 0.001)、啰音评分≥4(OR = 3.24 [95% CI:1.66 - 6.32];P < 0.001)、C反应蛋白(CRP)>100 mg/L(OR = 2.10 [95% CI:0.95 - 4.63];P = 0.067)以及D-二聚体>3000 ng/mL(OR = 6.86 [95% CI:3.54 - 13.28];P < 0.001)是血栓形成的独立预测因素。利用这些变量,我们构建了一个用于估计PT预测试概率的列线图(CRP、心率、D-二聚体、啰音评分和呼吸频率[CHEDDAR评分])。该评分显示出较高的预测准确性(受试者工作特征曲线下面积 = 0.877;95% CI:0.83 - 0.92)。列线图上得分低于182分表明PT概率较低,阴性预测值为92%。
CHEDDAR评分可用于估计非重症监护病房住院COVID-19患者的PT预测试概率。
开发一种用于COVID-19患者PT诊断的新临床预测模型可能有助于患者的分诊,并限制不必要的辐射暴露以及因碘化造影剂导致的肾毒性风险。