Suppr超能文献

新型冠状病毒肺炎(SARS-CoV-2)感染住院患者肺血栓形成诊断的临床预测模型

Clinical prediction model for pulmonary thrombosis diagnosis in hospitalized patients with SARS-CoV-2 infection.

作者信息

Franco-Moreno Anabel, Brown-Lavalle David, Rodríguez-Ramírez Nicolás, Muñoz-Roldán Candela, Rubio-Aguilera Ana Ignes, Campos-Arenas Maria, Muñoz-Rivas Nuria, Moya-Mateo Eva, Ruiz-Giardín José Manuel, Pardo-Guimerá Virginia, Ulla-Anes Mariano, Pedrero-Tomé Roberto, Torres-Macho Juan, Bustamante-Fermosel Ana

机构信息

Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, Madrid, Spain.

Department of Radiology, Hospital Universitario Infanta Leonor-Virgen de la Torre, Madrid, Spain.

出版信息

J Clin Transl Res. 2023 Feb 6;9(2):59-68. eCollection 2023 Apr 28.

Abstract

BACKGROUND AND AIM

We aimed to develop a clinical prediction model for pulmonary thrombosis (PT) diagnosis in hospitalized COVID-19 patients.

METHODS

Non-intensive care unit hospitalized COVID-19 patients who underwent a computed tomography pulmonary angiogram (CTPA) for suspected PT were included in the study. Demographic, clinical, analytical, and radiological variables as potential factors associated with the presence of PT were selected. Multivariable Cox regression analysis to develop a score for estimating the pre-test probability of PT was performed. The score was internally validated by bootstrap analysis.

RESULTS

Among the 271 patients who underwent a CTPA, 132 patients (48.7%) had PT. Heart rate >100 bpm (OR = 4.63 [95% CI: 2.30-9.34]; < 0.001), respiratory rate >22 bpm (OR = 5.21 [95% CI: 2.00-13.54]; < 0.001), RALE score ≥4 (OR = 3.24 [95% CI: 1.66-6.32]; < 0.001), C-reactive protein (CRP) >100 mg/L (OR = 2.10 [95% CI: 0.95-4.63]; = 0.067), and D-dimer >3.000 ng/mL (OR = 6.86 [95% CI: 3.54-13.28]; < 0.001) at the time of suspected PT were independent predictors of thrombosis. Using these variables, we constructed a nomogram (CRP, Heart rate, D-dimer, RALE score, and respiratory rate [CHEDDAR score]) for estimating the pre-test probability of PT. The score showed a high predictive accuracy (area under the receiver-operating characteristics curve = 0.877; 95% CI: 0.83-0.92). A score lower than 182 points on the nomogram confers a low probability for PT with a negative predictive value of 92%.

CONCLUSIONS

CHEDDAR score can be used to estimate the pre-test probability of PT in hospitalized COVID-19 patients outside the intensive care unit.

RELEVANCE FOR PATIENTS

Developing a new clinical prediction model for PT diagnosis in COVID-19 may help in the triage of patients, and limit unnecessary exposure to radiation and the risk of nephrotoxicity due to iodinated contrast.

摘要

背景与目的

我们旨在开发一种用于诊断住院COVID-19患者肺血栓形成(PT)的临床预测模型。

方法

本研究纳入了因疑似PT而接受计算机断层扫描肺动脉造影(CTPA)的非重症监护病房住院COVID-19患者。选择人口统计学、临床、分析和放射学变量作为与PT存在相关的潜在因素。进行多变量Cox回归分析以制定一个用于估计PT预测试概率的评分。该评分通过自举分析进行内部验证。

结果

在271例接受CTPA的患者中,132例(48.7%)患有PT。疑似PT时心率>100次/分钟(OR = 4.63 [95% CI:2.30 - 9.34];P < 0.001)、呼吸频率>22次/分钟(OR = 5.21 [95% CI:2.00 - 13.54];P < 0.001)、啰音评分≥4(OR = 3.24 [95% CI:1.66 - 6.32];P < 0.001)、C反应蛋白(CRP)>100 mg/L(OR = 2.10 [95% CI:0.95 - 4.63];P = 0.067)以及D-二聚体>3000 ng/mL(OR = 6.86 [95% CI:3.54 - 13.28];P < 0.001)是血栓形成的独立预测因素。利用这些变量,我们构建了一个用于估计PT预测试概率的列线图(CRP、心率、D-二聚体、啰音评分和呼吸频率[CHEDDAR评分])。该评分显示出较高的预测准确性(受试者工作特征曲线下面积 = 0.877;95% CI:0.83 - 0.92)。列线图上得分低于182分表明PT概率较低,阴性预测值为92%。

结论

CHEDDAR评分可用于估计非重症监护病房住院COVID-19患者的PT预测试概率。

对患者的意义

开发一种用于COVID-19患者PT诊断的新临床预测模型可能有助于患者的分诊,并限制不必要的辐射暴露以及因碘化造影剂导致的肾毒性风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74ff/10075091/ebbea27ab1a9/jclintranslres-2023-9-2-59-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验