Stouffer Kaitlin M, Trouv Alain, Younes Laurent, Kunst Michael, Ng Lydia, Zeng Hongkui, Anant Manjari, Fan Jean, Kim Yongsoo, Miller Michael I
bioRxiv. 2023 Mar 29:2023.03.28.534622. doi: 10.1101/2023.03.28.534622.
This paper explicates a solution to the problem of building correspondences between molecular-scale transcriptomics and tissue-scale atlases. The central model represents spatial transcriptomics as generalized functions encoding molecular position and high-dimensional transcriptomic-based (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling each atlas compartment as a homogeneous random field with unknown transcriptomic feature distribution. The algorithm presented solves simultaneously for the minimizing geodesic diffeomorphism of coordinates and latent atlas transcriptomic feature fractions by alternating LDDMM optimization for coordinate transformations and quadratic programming for the latent transcriptomic variables. We demonstrate the universality of the algorithm in mapping tissue atlases to gene-based and cell-based MERFISH datasets as well as to other tissue scale atlases. The joint estimation of diffeomorphisms and latent feature distributions allows integration of diverse molecular and cellular datasets into a single coordinate system and creates an avenue of comparison amongst atlas ontologies for continued future development.
本文阐述了一种解决分子尺度转录组学与组织尺度图谱之间建立对应关系问题的方法。核心模型将空间转录组学表示为编码分子位置和基于转录组学的高维(基因、细胞类型)身份的广义函数。我们通过将每个图谱区域建模为具有未知转录组特征分布的齐次随机场,将其映射到低维图谱本体。所提出的算法通过交替进行坐标变换的LDDMM优化和潜在转录组变量的二次规划,同时求解坐标的最小化测地线微分同胚和潜在图谱转录组特征分数。我们展示了该算法在将组织图谱映射到基于基因和基于细胞的MERFISH数据集以及其他组织尺度图谱方面的通用性。微分同胚和潜在特征分布的联合估计允许将不同的分子和细胞数据集整合到单个坐标系中,并为图谱本体之间的持续未来发展创造了比较途径。