Singh Nikhil, Hinkle Jacob, Joshi Sarang, Fletcher P Thomas
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:1219-1222. doi: 10.1109/ISBI.2013.6556700.
This paper presents a novel approach for diffeomorphic image regression and atlas estimation that results in improved convergence and numerical stability. We use a vector momenta representation of a diffeomorphism's initial conditions instead of the standard scalar momentum that is typically used. The corresponding variational problem results in a closed-form update for template estimation in both the geodesic regression and atlas estimation problems. While we show that the theoretical optimal solution is equivalent to the scalar momenta case, the simplification of the optimization problem leads to more stable and efficient estimation in practice. We demonstrate the effectiveness of our method for atlas estimation and geodesic regression using synthetically generated shapes and 3D MRI brain scans.
本文提出了一种用于微分同胚图像回归和图谱估计的新方法,该方法可提高收敛性和数值稳定性。我们使用微分同胚初始条件的向量动量表示,而不是通常使用的标准标量动量。相应的变分问题在测地线回归和图谱估计问题中都能得到模板估计的闭式更新。虽然我们表明理论最优解与标量动量情况等效,但优化问题的简化在实际中导致了更稳定和高效的估计。我们使用合成生成的形状和3D MRI脑部扫描展示了我们的方法在图谱估计和测地线回归方面的有效性。