Malhotra Akshit, Chauhan Suchitra Rajput, Rahaman Mispaur, Tripathi Ritika, Khanuja Manika, Chauhan Ashwini
Department of Microbiology, Tripura University, Suryamaninagar, Tripura, India.
Invisiobiome, New Delhi, India.
Front Chem. 2023 Mar 23;11:1138333. doi: 10.3389/fchem.2023.1138333. eCollection 2023.
Medical devices such as Central Venous Catheters (CVCs), are routinely used in intensive and critical care settings. In the present scenario, incidences of Catheter-Related Blood Stream Infections (CRBSIs) pose a serious challenge. Despite considerable advancements in the antimicrobial therapy and material design of CVCs, clinicians continue to struggle with infection-related complications. These complications are often due colonization of bacteria on the surface of the medical devices, termed as biofilms, leading to infections. Biofilm formation is recognized as a critical virulence trait rendering infections chronic and difficult to treat even with 1,000x, the minimum inhibitory concentration (MIC) of antibiotics. Therefore, non-antibiotic-based solutions that prevent bacterial adhesion on medical devices are warranted. In our study, we report a novel and simple method to synthesize zinc oxide (ZnO) nanoparticles using ethanolic plant extracts of . We investigated its physio-chemical characteristics using Field Emission- Scanning Electron Microscopy and Energy dispersive X-Ray analysis, X-Ray Diffraction (XRD), Photoluminescence Spectroscopy, UV-Visible and Diffuse Reflectance spectroscopy, and Dynamic Light Scattering characterization methods. Hexagonal phase with wurtzite structure was confirmed using XRD with particle size of ∼50 nm. ZnO nanoparticles showed a band gap 3.25 eV. Photoluminescence spectra showed prominent peak corresponding to defects formed in the synthesized ZnO nanoparticles. Clinically relevant bacterial strains, viz., PAO1 MTCC 119 and MTCC 7443 were treated with different concentrations of ZnO NPs. A concentration dependent increase in killing efficacy was observed with 99.99% killing at 500 μg/mL. Further, we coated the commercial CVCs using green synthesized ZnO NPs and evaluated it is antibiofilm efficacy using previously optimized continuous flow model. The hydrophilic functionalized interface of CVC prevents biofilm formation by , and . Based on our findings, we propose ZnO nanoparticles as a promising non-antibiotic-based preventive solutions to reduce the risk of central venous catheter-associated infections.
诸如中心静脉导管(CVC)之类的医疗设备常用于重症监护和危重症护理环境中。在当前情况下,导管相关血流感染(CRBSI)的发生率构成了严峻挑战。尽管在抗菌治疗和CVC的材料设计方面取得了长足进步,但临床医生仍在与感染相关并发症作斗争。这些并发症通常是由于细菌在医疗设备表面定植形成生物膜所致,进而导致感染。生物膜形成被认为是一种关键的毒力特性,即使使用抗生素最低抑菌浓度(MIC)的1000倍,也会使感染变为慢性且难以治疗。因此,需要基于非抗生素的解决方案来防止细菌粘附在医疗设备上。在我们的研究中,我们报告了一种使用乙醇植物提取物合成氧化锌(ZnO)纳米颗粒的新颖且简单的方法。我们使用场发射扫描电子显微镜、能量色散X射线分析、X射线衍射(XRD)、光致发光光谱、紫外可见和漫反射光谱以及动态光散射表征方法研究了其物理化学特性。通过XRD确认了具有纤锌矿结构的六方相,粒径约为50nm。ZnO纳米颗粒的带隙为3.25eV。光致发光光谱显示出与合成的ZnO纳米颗粒中形成的缺陷相对应的突出峰。用不同浓度的ZnO纳米颗粒处理临床相关细菌菌株,即铜绿假单胞菌PAO1 MTCC 119和金黄色葡萄球菌MTCC 7443。观察到杀菌效果呈浓度依赖性增加,在500μg/mL时杀菌率达99.99%。此外,我们使用绿色合成的ZnO纳米颗粒涂覆商用CVC,并使用先前优化的连续流模型评估其抗生物膜功效。CVC的亲水性功能化界面通过……防止生物膜形成。基于我们的研究结果,我们提出ZnO纳米颗粒作为一种有前景的基于非抗生素的预防解决方案,以降低中心静脉导管相关感染的风险。
Int J Nanomedicine. 2020-11-2
Front Microbiol. 2018-9-3
Folia Microbiol (Praha). 2025-4
Biomed Rep. 2024-8-30
J Funct Biomater. 2022-11-19
Life (Basel). 2022-10-20
Bioprocess Biosyst Eng. 2022-9
Mater Sci Eng C Mater Biol Appl. 2021-12