Suppr超能文献

预测新辅助化疗后的病理完全缓解:一项结合浸润性乳腺癌患者临床特征和超声语义学的列线图研究

Predicting pathological complete response after neoadjuvant chemotherapy: A nomogram combining clinical features and ultrasound semantics in patients with invasive breast cancer.

作者信息

Wang Ke-Nie, Meng Ya-Jiao, Yu Yue, Cai Wen-Run, Wang Xin, Cao Xu-Chen, Ge Jie

机构信息

The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.

出版信息

Front Oncol. 2023 Mar 22;13:1117538. doi: 10.3389/fonc.2023.1117538. eCollection 2023.

Abstract

BACKGROUND

Early identification of response to neoadjuvant chemotherapy (NAC) is instrumental in predicting patients prognosis. However, since a fixed criterion with high accuracy cannot be generalized to molecular subtypes, our study first aimed to redefine grades of clinical response to NAC in invasive breast cancer patients (IBC). And then developed a prognostic model based on clinical features and ultrasound semantics.

METHODS

A total of 480 IBC patients were enrolled who underwent anthracycline and taxane-based NAC between 2018 and 2020. The decrease rate of the largest diameter was calculated by ultrasound after NAC and their cut-off points were determined among subtypes. Thereafter, a nomogram was constructed based on clinicopathological and ultrasound-related data, and validated using the calibration curve, receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and clinical impact curve (CIC).

RESULTS

The optimal cut-off points for predicting pCR were 53.23%, 51.56%, 41.89%, and 53.52% in luminal B-like (HER2 negative), luminal B-like (HER2 positive), HER2 positive, and triple-negative, respectively. In addition, time interval, tumor size, molecular subtypes, largest diameter decrease rate, and change of blood perfusion were significantly associated with pCR (all < 0.05). The prediction model based on the above variables has great predictive power and clinical value.

CONCLUSION

Taken together, our data demonstrated that calculated cut-off points of tumor reduction rates could be reliable in predicting pathological response to NAC and developed nomogram predicting prognosis would help tailor systematic regimens with high precision.

摘要

背景

新辅助化疗(NAC)反应的早期识别有助于预测患者预后。然而,由于具有高精度的固定标准不能推广到分子亚型,我们的研究首先旨在重新定义浸润性乳腺癌患者(IBC)对NAC的临床反应分级。然后基于临床特征和超声语义学开发了一种预后模型。

方法

共纳入480例在2018年至2020年间接受了以蒽环类和紫杉类为基础的NAC的IBC患者。NAC后通过超声计算最大直径的减小率,并在各亚型中确定其截断点。此后,基于临床病理和超声相关数据构建列线图,并使用校准曲线、受试者工作特征(ROC)曲线、决策曲线分析(DCA)和临床影响曲线(CIC)进行验证。

结果

在luminal B样(HER2阴性)、luminal B样(HER2阳性)、HER2阳性和三阴性亚型中,预测病理完全缓解(pCR)的最佳截断点分别为53.23%、51.56%、41.89%和53.52%。此外,时间间隔、肿瘤大小、分子亚型、最大直径减小率和血流灌注变化与pCR显著相关(均P<0.05)。基于上述变量的预测模型具有强大的预测能力和临床价值。

结论

综上所述,我们的数据表明,计算出的肿瘤缩小率截断点在预测对NAC的病理反应方面可能是可靠的,并且开发的预测预后的列线图将有助于高精度地制定系统治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e92b/10075137/172ae48009ec/fonc-13-1117538-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验