Gredell Marie, Lu Ju, Zuo Yi
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States.
Front Synaptic Neurosci. 2023 Mar 23;15:1135479. doi: 10.3389/fnsyn.2023.1135479. eCollection 2023.
Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing and data show that wild type neurons embedded in a network of KO neurons or glia exhibit spine abnormalities just as neurons in global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these KO neurons by two-photon microscopy. We found that, while L5 PyrNs in adult global KO mice have abnormally high density of thin spines, single-cell KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.
脆性X综合征(FXS)是由单基因突变导致功能丧失引起的最广为人知的遗传性智力障碍形式。该基因突变消除了脆性X信使核糖核蛋白(FMRP)的表达,而FMRP可调节许多突触蛋白的表达。在脆性X综合征患者死后的大脑中,皮质锥体细胞显示出树突棘密度异常高且形态不成熟;这种表型在基因敲除(KO)小鼠中也有体现。虽然FMRP在树突中处于良好位置以调节突触可塑性,但有趣的数据表明,嵌入基因敲除神经元或神经胶质网络中的野生型神经元表现出与全局基因敲除小鼠中的神经元一样的棘突异常。这就提出了一个问题:FMRP是以细胞自主方式调节突触形态和动力学,还是突触表型源于异常的突触前输入?为了解决这个问题,我们结合病毒和小鼠遗传学方法,在出生后早期发育阶段或成年期从皮质第5层锥体细胞(L5 PyrNs)的非常稀疏的子集中删除FMRP。然后,我们通过双光子显微镜观察这些基因敲除神经元上树突棘的结构动态。我们发现,虽然成年全局基因敲除小鼠中的L5 PyrNs有异常高的细棘突密度,但成年期的单细胞基因敲除并不影响棘突密度、形态或动力学。相反,新生期FMRP缺失的神经元棘突密度正常,但在1月龄时棘突形成增加,重现了全局基因敲除小鼠中的表型。有趣的是,到成年时,这些神经元细棘突密度升高,但总棘突密度正常。总之,我们的数据揭示了青春期FMRP对皮质突触动力学的细胞自主调节,但成年期的棘突缺陷也涉及非细胞自主因素。