Englisch Holger, Krabichler Thomas, Müller Konrad J, Schwarz Marc
Department of Treasury, Thurgauer Kantonalbank, Weinfelden, Switzerland.
Centre for Banking and Finance, Eastern Switzerland University of Applied Sciences, St. Gallen, Switzerland.
Front Artif Intell. 2023 Mar 22;6:1120297. doi: 10.3389/frai.2023.1120297. eCollection 2023.
Retail banks use (ALM) to hedge interest rate risk associated with differences in maturity and predictability of their loan and deposit portfolios. The opposing goals of profiting from maturity transformation and hedging interest rate risk while adhering to numerous regulatory constraints make ALM a challenging problem. We formulate ALM as a high-dimensional stochastic control problem in which monthly investment and financing decisions drive the evolution of the bank's balance sheet. To find strategies that maximize long-term utility in the presence of constraints and stochastic interest rates, we train neural networks that parametrize the decision process. Our experiments provide practical insights and demonstrate that the approach of Deep ALM deduces dynamic strategies that outperform static benchmarks.
零售银行运用资产负债管理(ALM)来对冲与贷款和存款组合的期限差异及可预测性相关的利率风险。在坚持众多监管约束的同时,从期限转换中获利和对冲利率风险这两个相互对立的目标,使得资产负债管理成为一个具有挑战性的问题。我们将资产负债管理表述为一个高维随机控制问题,其中每月的投资和融资决策推动银行资产负债表的演变。为了在存在约束和随机利率的情况下找到使长期效用最大化的策略,我们训练对决策过程进行参数化的神经网络。我们的实验提供了实际见解,并证明深度资产负债管理方法推导出的动态策略优于静态基准。