Suppr超能文献

脂质氧化通过表面吸引机制控制膜附近的肽自组装。

Lipid oxidation controls peptide self-assembly near membranes through a surface attraction mechanism.

作者信息

John Torsten, Piantavigna Stefania, Dealey Tiara J A, Abel Bernd, Risselada Herre Jelger, Martin Lisandra L

机构信息

School of Chemistry, Monash University Clayton VIC 3800 Australia

Leibniz Institute of Surface Engineering (IOM) Permoserstraße 15 04318 Leipzig Germany.

出版信息

Chem Sci. 2023 Mar 2;14(14):3730-3741. doi: 10.1039/d3sc00159h. eCollection 2023 Apr 5.

Abstract

The self-assembly of peptides into supramolecular structures has been linked to neurodegenerative diseases but has also been observed in functional roles. Peptides are physiologically exposed to crowded environments of biomacromolecules, and particularly cellular membrane lipids. Previous research has shown that membranes can both accelerate and inhibit peptide self-assembly. Here, we studied the impact of membrane models that mimic cellular oxidative stress and compared this to mammalian and bacterial membranes. Using molecular dynamics simulations and experiments, we propose a model that explains how changes in peptide-membrane binding, electrostatics, and peptide secondary structure stabilization determine the nature of peptide self-assembly. We explored the influence of zwitterionic (POPC), anionic (POPG) and oxidized (PazePC) phospholipids, as well as cholesterol, and mixtures thereof, on the self-assembly kinetics of the amyloid β (1-40) peptide (Aβ), linked to Alzheimer's disease, and the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5). We show that the presence of an oxidized lipid had similar effects on peptide self-assembly as the bacterial mimetic membrane. While Aβ fibril formation was accelerated, U3.5 aggregation was inhibited by the same lipids at the same peptide-to-lipid ratio. We attribute these findings and peptide-specific effects to differences in peptide-membrane adsorption with U3.5 being more strongly bound to the membrane surface and stabilized in an α-helical conformation compared to Aβ. Different peptide-to-lipid ratios resulted in different effects. We found that electrostatic interactions are a primary driving force for peptide-membrane interaction, enabling us to propose a model for predicting how cellular changes might impact peptide self-assembly .

摘要

肽自组装成超分子结构与神经退行性疾病有关,但也在功能作用中被观察到。肽在生理上会暴露于生物大分子的拥挤环境中,尤其是细胞膜脂质。先前的研究表明,膜既能加速也能抑制肽的自组装。在此,我们研究了模拟细胞氧化应激的膜模型的影响,并将其与哺乳动物和细菌膜进行比较。通过分子动力学模拟和实验,我们提出了一个模型,该模型解释了肽 - 膜结合、静电作用和肽二级结构稳定性的变化如何决定肽自组装的性质。我们探讨了两性离子(POPC)、阴离子(POPG)和氧化(PazePC)磷脂以及胆固醇及其混合物对与阿尔茨海默病相关的淀粉样β(1 - 40)肽(Aβ)和形成淀粉样的抗菌肽uperin 3.5(U3.5)自组装动力学的影响。我们表明,氧化脂质的存在对肽自组装的影响与细菌模拟膜相似。在相同的肽与脂质比例下,虽然Aβ原纤维形成加速,但相同的脂质会抑制U3.5的聚集。我们将这些发现和肽特异性效应归因于肽 - 膜吸附的差异,与Aβ相比,U3.5与膜表面结合更紧密,并以α - 螺旋构象稳定。不同的肽与脂质比例产生不同的效果。我们发现静电相互作用是肽 - 膜相互作用的主要驱动力,这使我们能够提出一个模型来预测细胞变化如何影响肽的自组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d607/10074436/f4d60ac14e70/d3sc00159h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验