Koh Chong Hui, Lambu Mallikharjuna Rao, Tan Chongyun, Wei Guangmin, Kok Zhi Yuan, Zhang Kaixi, Vu Quang Huy Nhat, Panneerselvam Muthuvel, Ooi Ying Jie, Tan Shiow Han, Wang Zheng, Tatina Madhu Babu, Ng Justin Tze Yang, Guo Aoxin, Tonanon Panyawut, Dang Tram T, Gan Yunn-Hwen, Mu Yuguang, Hammond Paula T, Chi Yonggui Robin, Webster Richard D, Pullarkat Sumod A, Li Qingjie, Greenberg E Peter, Gründling Angelika, Pethe Kevin, Chan-Park Mary B
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore, Singapore.
Centre for Antimicrobial Bioengineering, NTU, Singapore, Singapore.
Nat Commun. 2025 Jul 12;16(1):6460. doi: 10.1038/s41467-025-61724-y.
Cationic polymers have emerged as promising next-generation antimicrobial agents, albeit with inherent limitations such as low potency and limited biocompatibility. Classical cationic polymers kill bacteria via physical membrane disruption. We propose a non-classical mechanism of crossing the bacterial plasma membrane barrier, a step required for subsequent inhibition of intracellular targets, by cationic polymers which are carbon acids. Oligoimidazolium (OIM) carbon acids, instead of lysing bacteria, transiently deprotonate in water to form hydrophobic N-heterocyclic carbenes (NHCs) and exhibit efficient plasma membrane translocation. Only OIMs that are carbon acids have potent antibacterial activities against even colistin- and multidrug-resistant bacteria. OIM amide derivatives exhibit excellent antibacterial efficacy in murine sepsis and thigh infection models, while a polymeric version acts as a prophylactic agent against bovine mastitis, which is a global agricultural problem. This study unveils a promising path for the development of an alternative class of potent antimicrobial agents.
阳离子聚合物已成为有前景的下一代抗菌剂,尽管存在诸如效力低和生物相容性有限等固有局限性。传统的阳离子聚合物通过物理性破坏细胞膜来杀死细菌。我们提出了一种非经典机制,即作为碳酸的阳离子聚合物跨越细菌质膜屏障,这是随后抑制细胞内靶点所必需的一步。寡咪唑鎓(OIM)碳酸不会裂解细菌,而是在水中短暂去质子化形成疏水性N-杂环卡宾(NHC),并表现出有效的质膜易位。只有作为碳酸的OIM对甚至对黏菌素和多重耐药菌都有强大的抗菌活性。OIM酰胺衍生物在小鼠败血症和大腿感染模型中表现出优异的抗菌效果,而聚合物形式则作为预防牛乳腺炎的药剂,牛乳腺炎是一个全球性的农业问题。这项研究揭示了开发另一类有效抗菌剂的一条有前景的途径。