HireVue.
J Appl Psychol. 2023 Sep;108(9):1425-1444. doi: 10.1037/apl0001084. Epub 2023 Apr 10.
The diversity-validity dilemma is one of the enduring challenges in personnel selection. Technological advances and new techniques for analyzing data within the fields of machine learning and industrial organizational psychology, however, are opening up innovative ways of addressing this dilemma. Given these rapid advances, we first present a framework unifying analytical methods commonly used in these two fields to reduce group differences. We then propose and demonstrate the effectiveness of two approaches for reducing group differences while maintaining validity, which are highly applicable to numerous big data scenarios: iterative predictor removal and multipenalty optimization. Iterative predictor removal is a technique where predictors are removed from the data set if they simultaneously contribute to higher group differences and lower predictive validity. Multipenalty optimization is a new analytical technique that models the diversity-validity trade-off by adding a group difference penalty to the model optimization. Both techniques were tested on a field sample of asynchronous video interviews. Although both techniques effectively decreased group differences while maintaining predictive validity, multipenalty optimization outperformed iterative predictor removal. Strengths and weaknesses of these two analytical techniques are also discussed along with future research directions. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
多样性-有效性困境是人员选拔中持久存在的挑战之一。然而,机器学习和工业组织心理学领域的技术进步和数据分析新技术正在为解决这一困境开辟创新途径。鉴于这些快速发展,我们首先提出了一个统一这两个领域常用分析方法的框架,以减少群体差异。然后,我们提出并证明了两种在保持有效性的同时减少群体差异的方法的有效性,这两种方法非常适用于许多大数据场景:迭代预测器去除和多重惩罚优化。迭代预测器去除是一种技术,如果预测器同时导致更高的群体差异和更低的预测有效性,则从数据集中去除预测器。多惩罚优化是一种新的分析技术,通过向模型优化添加群体差异惩罚来模拟多样性-有效性权衡。这两种技术都在异步视频面试的现场样本上进行了测试。虽然这两种技术都有效地降低了群体差异,同时保持了预测有效性,但多惩罚优化的表现优于迭代预测器去除。还讨论了这两种分析技术的优缺点以及未来的研究方向。