Tu Wenhui, Ling Guang, Liu Feng, Hu Fuyan, Song Xiangxiang
IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):2945-2958. doi: 10.1109/TCBB.2023.3266109. Epub 2023 Oct 9.
The single-cell pseudotemporal trajectory inference is an important way to explore the process of developmental changes within a cell. Due to the uneven rate of cell growth, changes in gene expression depend less on the time of data collection and more on a cell's "internal clock". To overcome the challenges of gene analysis, and replicate biological developmental processes, several strategies have been put forth. However, due to the size of single-cell datasets, locating relevant signposts usually necessitate clustering analysis or a sizable amount of priori information. To this end, we propose a novel single-cell pseudotemporal trajectory inference technique: GCSTI method, which is based on graph compression and doesn't rely on a priori knowledge or clustering procedures, can handle the trajectory inference problem for a large network in a stable and efficient manner. Additionally, we simultaneously improve the pseudotime defining method currently employed in this study in order to obtain more trustworthy and beneficial outcomes for trajectory inference. Finally, we validate the efficacy and stability of the GCSTI method using datasets from human skeletal muscle myogenic cells and four simulated datasets.
单细胞伪时间轨迹推断是探索细胞内发育变化过程的重要方法。由于细胞生长速率不均,基因表达的变化较少依赖于数据收集时间,而更多地依赖于细胞的“内部时钟”。为了克服基因分析的挑战并复制生物发育过程,人们提出了几种策略。然而,由于单细胞数据集的规模,定位相关路标通常需要聚类分析或大量先验信息。为此,我们提出了一种新颖的单细胞伪时间轨迹推断技术:GCSTI方法,该方法基于图压缩,不依赖先验知识或聚类过程,可以稳定、高效地处理大型网络的轨迹推断问题。此外,我们同时改进了本研究中目前使用的伪时间定义方法,以便为轨迹推断获得更可靠和有益的结果。最后,我们使用来自人类骨骼肌成肌细胞的数据集和四个模拟数据集验证了GCSTI方法的有效性和稳定性。