Suppr超能文献

scCDG:一种基于深度自编码器和图卷积网络的单细胞RNA测序数据分析方法。

scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis.

作者信息

Wang Hai-Yun, Zhao Jian-Ping, Su Yan-Sen, Zheng Chun-Hou

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3685-3694. doi: 10.1109/TCBB.2021.3126641. Epub 2022 Dec 8.

Abstract

Identifying cell types is one of the main goals of single-cell RNA sequencing (scRNA-seq) analysis, and clustering is a common method for this item. However, the massive amount of data and the excess noise level bring challenge for single cell clustering. To address this challenge, in this paper, we introduced a novel method named single-cell clustering based on denoising autoencoder and graph convolution network (scCDG), which consists of two core models. The first model is a denoising autoencoder (DAE) used to fit the data distribution for data denoising. The second model is a graph autoencoder using graph convolution network (GCN), which projects the data into a low-dimensional space (compressed) preserving topological structure information and feature information in scRNA-seq data simultaneously. Extensive analysis on seven real scRNA-seq datasets demonstrate that scCDG outperforms state-of-the-art methods in some research sub-fields, including single cell clustering, visualization of transcriptome landscape, and trajectory inference.

摘要

识别细胞类型是单细胞RNA测序(scRNA-seq)分析的主要目标之一,而聚类是实现这一目标的常用方法。然而,海量的数据和过高的噪声水平给单细胞聚类带来了挑战。为应对这一挑战,本文介绍了一种名为基于去噪自动编码器和图卷积网络的单细胞聚类(scCDG)的新方法,该方法由两个核心模型组成。第一个模型是用于拟合数据分布以进行数据去噪的去噪自动编码器(DAE)。第二个模型是使用图卷积网络(GCN)的图自动编码器,它将数据投影到低维空间(压缩),同时保留scRNA-seq数据中的拓扑结构信息和特征信息。对七个真实scRNA-seq数据集的广泛分析表明,scCDG在一些研究子领域中优于现有方法,包括单细胞聚类、转录组景观可视化和轨迹推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验