Suppr超能文献

基于神经网络的二阶异构非线性多智能体系统的固定时间跟踪与包容控制

Neural Network-Based Fixed-Time Tracking and Containment Control of Second-Order Heterogeneous Nonlinear Multiagent Systems.

作者信息

Chen Chongyang, Han Yiyan, Zhu Song, Zeng Zhigang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11565-11579. doi: 10.1109/TNNLS.2023.3262925. Epub 2024 Aug 5.

Abstract

This study concentrates on the fixed-time tracking consensus and containment control of second-order heterogeneous nonlinear multiagent systems (MASs) with and without measurable velocity under directed topology. By defining a time-varying scaling function and approximating the unknown nonlinear dynamics with radial basis function neural networks (RBFNNs), a novel distributed protocol for solving the fixed-time tracking consensus and containment control problems of second-order heterogeneous nonlinear MASs with full states available is proposed based on a nonsingular sliding-mode control method constructed by designing a prescribed-time convergent sliding surface. For the scenario of immeasurable velocity, a fixed-time convergent states' observer is designed to reveal the velocity information when the unknown linearity is bounded. Subsequently, a distributed fixed-time consensus protocol based on observed velocity information is proposed for the extended results. Ultimately, the acquired results are verified by three simulation examples.

摘要

本研究聚焦于具有可测速度和不可测速度的二阶异构非线性多智能体系统(MASs)在有向拓扑下的固定时间跟踪一致性和包容控制。通过定义一个时变缩放函数并用径向基函数神经网络(RBFNNs)逼近未知非线性动力学,基于设计一个规定时间收敛滑模面构建的非奇异滑模控制方法,提出了一种新颖的分布式协议,用于解决全状态可用的二阶异构非线性MASs的固定时间跟踪一致性和包容控制问题。对于速度不可测的情况,设计了一个固定时间收敛状态观测器,以在未知线性部分有界时揭示速度信息。随后,针对扩展结果提出了一种基于观测速度信息的分布式固定时间一致性协议。最终,通过三个仿真例子验证了所获得的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验