Suppr超能文献

原发性膜性肾病患者复发的初步列线图模型。

A preliminary nomogram model for predicting relapse of patients with primary membranous nephropathy.

机构信息

Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P. R. China.

出版信息

Ren Fail. 2023 Dec;45(1):2199092. doi: 10.1080/0886022X.2023.2199092.

Abstract

OBJECTIVE

To explore the predictive factors and establish a nomogram model for predicting relapse risk in primary membranous nephropathy (PMN).

METHODS

The clinical, laboratory, pathological and follow-up data of patients with biopsy-proven membranous nephropathy were collected in the Affiliated Hospital of Qingdao University. A total of 400 PMN patients who achieved remission were assigned to the development group ( = 280) and validation group ( = 120) randomly. Cox regression analysis was performed in the development cohort to determine the predictive factors of relapse in PMN patients, a nomogram model was established based on the multivariate Cox regression analysis and validated in the validation group. C-index and calibration plots were used to evaluate the discrimination and calibration performance of the model respectively.

RESULT

Hyperuricemia (HR = 2.938, 95% CI 1.875-4.605,  0.001), high C-reactive protein (CRP) (HR = 1.147, 95% CI 1.086-1.211,  0.001), and treatment with calcineurin inhibitors with or without glucocorticoids (HR = 2.845, 95%CI 1.361-5.946,  0.005) were independent risk factors, while complete remission (HR = 0.420, 95%CI 0.270-0.655,  0.001) was a protective factor for relapse of PMN according to multivariate Cox regression analysis, then a nomogram model for predicting relapse of PMN was established combining the above indicators. The C-indices of this model were 0.777 (95%CI 0.729-0.825) and 0.778 (95%CI 0.704-0.853) in the development group and validation group respectively. The calibration plots showed that the predicted relapse probabilities of the model were consistent with the actual probabilities at 1, 2 and 3 years, which indicated favorable performance of this model in predicting the relapse probability of PMN.

CONCLUSIONS

Hyperuricemia, remission status, CRP and therapeutic regimen were predictive factors for relapse of PMN. A novel nomogram model with good discrimination and calibration was constructed to predict relapse risk in patients with PMN early.

摘要

目的

探讨原发性膜性肾病(PMN)复发风险的预测因素,并建立列线图模型。

方法

收集青岛大学附属医院经肾活检证实的膜性肾病患者的临床、实验室、病理和随访资料。将 400 例达到缓解的 PMN 患者随机分为发展组(n=280)和验证组(n=120)。在发展队列中进行 Cox 回归分析,确定 PMN 患者复发的预测因素,基于多变量 Cox 回归分析建立列线图模型,并在验证组中验证。分别使用 C 指数和校准图评估模型的区分度和校准性能。

结果

高尿酸血症(HR=2.938,95%CI 1.875-4.605, 0.001)、高 C 反应蛋白(CRP)(HR=1.147,95%CI 1.086-1.211, 0.001)和钙调神经磷酸酶抑制剂联合或不联合糖皮质激素治疗(HR=2.845,95%CI 1.361-5.946, 0.005)是独立的危险因素,而完全缓解(HR=0.420,95%CI 0.270-0.655, 0.001)是 PMN 复发的保护因素。根据多变量 Cox 回归分析,建立了预测 PMN 复发的列线图模型,该模型结合了上述指标。该模型在发展组和验证组的 C 指数分别为 0.777(95%CI 0.729-0.825)和 0.778(95%CI 0.704-0.853)。校准图显示,模型预测的复发概率与 1、2 和 3 年的实际概率一致,表明该模型在预测 PMN 复发概率方面具有良好的性能。

结论

高尿酸血症、缓解状态、CRP 和治疗方案是 PMN 复发的预测因素。构建了一种具有良好区分度和校准度的新型列线图模型,可早期预测 PMN 患者的复发风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d66c/10101672/77378c52501f/IRNF_A_2199092_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验