IBM Research Europe, Hartree Centre, WA4 4AD Daresbury, United Kingdom.
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
J Phys Chem B. 2023 May 4;127(17):3946-3957. doi: 10.1021/acs.jpcb.3c00611. Epub 2023 Apr 11.
We model, via large-scale molecular dynamics simulations, the isothermal compression of low-density amorphous ice (LDA) to generate high-density amorphous ice (HDA) and the corresponding decompression extending to negative pressures to recover the low-density amorphous phase (LDA). Both LDA and HDA are nearly hyperuniform and are characterized by a dynamical HBN, showing that amorphous ices are nonstatic materials and implying that nearly hyperuniformity can be accommodated in dynamical networks. In correspondence with both the LDA-to-HDA and the HDA-to-LDA phase transitions, the (partial) activation of rotational degrees of freedom activates a cascade effect that induces a drastic change in the connectivity and a pervasive reorganization of the HBN topology which, ultimately, break the samples' hyperuniform character. Key to this effect is the rapid rate at which changes occur, and not their magnitude. The inspection of structural properties from the short- to the long-range shows that signatures of metastability are present at all length-scales, hence providing further solid evidence in support of the liquid-liquid critical point scenario. LDA and LDA differ in terms of HBN and structural properties, implying that they are distinct low-density glasses. Our work unveils the role of molecular rotations in the phase transitions between amorphous ices and shows how the unfreezing of rotational degrees of freedom generates a cascade effect that propagates over multiple length-scales. Our findings greatly improve our basic understanding of water and amorphous ices and can potentially impact the field of molecular network-forming materials at large.
我们通过大规模分子动力学模拟,模拟了低密度非晶冰(LDA)的等温压缩,生成了高密度非晶冰(HDA),并相应地进行减压延伸至负压,以恢复低密度非晶相(LDA)。LDA 和 HDA 都几乎是超均匀的,其特征是动态 HBN,表明非晶冰是非静态材料,并暗示几乎超均匀性可以在动态网络中得到适应。与 LDA 到 HDA 和 HDA 到 LDA 相变相对应,旋转自由度的(部分)激活会引发级联效应,导致连接性发生剧烈变化,并对 HBN 拓扑结构进行普遍的重新组织,最终破坏样品的超均匀特性。这种效应的关键在于变化发生的速度,而不是其幅度。从短程到长程检查结构特性表明,在所有长度尺度上都存在亚稳性的特征,从而为支持液体-液体临界点情景提供了进一步的坚实证据。LDA 和 LDA 在 HBN 和结构性质方面存在差异,这意味着它们是不同的低密度玻璃。我们的工作揭示了分子旋转在非晶冰的相变中的作用,并展示了旋转自由度的解冻如何产生级联效应,这种效应会在多个长度尺度上传播。我们的发现极大地提高了我们对水和非晶冰的基本理解,并可能对整个分子网络形成材料领域产生影响。