Eltareb Ali, Zhou Yang, Lopez Gustavo E, Giovambattista Nicolas
Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
Commun Chem. 2024 Dec 4;7(1):289. doi: 10.1038/s42004-024-01342-9.
The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics.
势能面(PEL)形式体系是统计力学中研究经典低温液体和玻璃热力学性质的有力工具。最近,PEL形式体系已扩展到服从量子力学的液体/玻璃,但应用仅限于原子模型液体。在这项工作中,我们使用路径积分分子动力学(PIMD)模拟将PEL形式体系扩展到液态/玻璃态水,其中包含核量子效应(NQE)。我们基于q-TIP4P/F水模型的PIMD模拟表明,量子水的PEL既是高斯型的又是非简谐的。重要的是,在PIMD模拟中与O/H原子相关的环聚合物,在液态和玻璃态的PEL局部最小值(固有结构,IS)处都会坍缩。这使我们能够使用经典水的IS振动态密度(从经典分子动力学模拟获得)来解析计算环聚合物体系的IS振动态密度(IS-VDOS)。详细讨论了NQE在不同压力下对液态/玻璃态水结构性质的作用。总体而言,我们的结果表明,PEL形式体系可以有效地描述低温下和玻璃态分子液体的行为,而无论液体/玻璃服从经典力学还是量子力学。