Suppr超能文献

MoS 的动态相演变伴随着有机硒化物的介导,使可充电锂电池的性能得到增强。

Dynamic phase evolution of MoS accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery.

机构信息

Department of Chemistry, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.

Department of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310058, P. R. China.

出版信息

Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2219395120. doi: 10.1073/pnas.2219395120. Epub 2023 Apr 11.

Abstract

Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS with sulfur vacancies (SVs-1T/2H-MoS) decomposed from amorphous MoS achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS, and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.

摘要

研究人员在锂硫电池方面付出了巨大努力,通常是针对可溶性多硫化物穿梭效应。作为一种典型的过渡金属硫化物,MoS 是解决锂硫电池问题的“灵丹妙药”,引起了越来越多的关注。在这项研究中,我们引入非晶态 MoS 作为类似硫的阴极材料,并阐明了其在电化学反应中的动态相演变。由非晶态 MoS 分解的具有硫空位的金属 1T 相和 2H 相 MoS(SVs-1T/2H-MoS)与“新生”硫在分子水平上实现了精细混合,并提供了连续的传导途径和可控的物理约束。同时,原位生成的 SVs-1T/2H-MoS 允许在高放电电压(≥1.8 V)下提前进行锂嵌入,并实现快速电子转移。此外,针对未键合的硫,二苯二硒(PDSe)作为一种模型氧化还原介体被应用,它可以共价键合硫原子形成转化型有机硒硫化合物,改变 MoS 中“新生”硫的原始氧化还原途径,并抑制多硫化物的穿梭效应。它还显著降低了活化能,从而加速了硫的还原动力学。因此,SVs-1T/2H-MoS 和有机硒硫化物的原位形成的插层-转化混合电极实现了增强的倍率性能和优异的循环稳定性。这项工作为设计高能量密度电极材料提供了一个新的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2160/10120084/7ce65680903d/pnas.2219395120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验