Suppr超能文献

硒掺杂实现快速动力学,使醚类兼容的硫代聚丙烯腈阴极具有优异性能。

Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping.

机构信息

State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.

出版信息

Nat Commun. 2019 Mar 4;10(1):1021. doi: 10.1038/s41467-019-08818-6.

Abstract

Sulfurized polyacrylonitrile is suggested to contain S (n ≤ 4) and shows good electrochemical performance in carbonate electrolytes for lithium sulfur batteries. However inferior results in ether electrolytes suggest that high solubility of LiS (n ≤ 4) trumps the limited redox conversion, leading to dissolution and shuttling. Here, we introduce a small amount of selenium in sulfurized polyacrylonitrile to accelerate the redox conversion, delivering excellent performance in both carbonate and ether electrolytes, including high reversible capacity (1300 mA h g at 0.2 A g), 84% active material utilization and high rate (capacity up to 900 mA h g at 10 A g). These cathodes can undergo 800 cycles with nearly 100% Coulombic efficiency and ultralow 0.029% capacity decay per cycle. Polysulfide dissolution is successfully suppressed by enhanced reaction kinetics. This work demonstrates an ether compatible sulfur cathode involving intermediate LiS (n ≤ 4), attractive rate and cycling performance, and a promising solution towards applicable lithium-sulfur batteries.

摘要

含硫聚丙烯腈被认为含有 S(n≤4),在用于锂硫电池的碳酸盐电解液中表现出良好的电化学性能。然而,在醚电解液中的较差结果表明,LiS(n≤4)的高溶解度超过了有限的氧化还原转化,导致溶解和穿梭。在这里,我们在硫代聚丙烯腈中引入少量硒来加速氧化还原转化,在碳酸盐和醚电解液中均表现出优异的性能,包括高可逆容量(在 0.2 A g 下为 1300 mA h g)、84%的活性材料利用率和高倍率(在 10 A g 下高达 900 mA h g)。这些正极在 800 次循环中具有近 100%的库仑效率和超低的 0.029%/循环的容量衰减。通过增强反应动力学成功抑制了多硫化物的溶解。这项工作展示了一种与醚兼容的含中间 LiS(n≤4)的硫正极,具有吸引人的倍率和循环性能,为可应用的锂硫电池提供了有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4360/6399341/3ce6b48afdaa/41467_2019_8818_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验