Suppr超能文献

根系结构定量指标的比较分析

A Comparative Analysis of Quantitative Metrics of Root Architecture.

作者信息

Rangarajan Harini, Lynch Jonathan P

机构信息

Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Plant Phenomics. 2021 Feb 24;2021:6953197. doi: 10.34133/2021/6953197. eCollection 2021.

Abstract

High throughput phenotyping is important to bridge the gap between genotype and phenotype. The methods used to describe the phenotype therefore should be robust to measurement errors, relatively stable over time, and most importantly, provide a reliable estimate of elementary phenotypic components. In this study, we use functional-structural modeling to evaluate quantitative phenotypic metrics used to describe root architecture to determine how they fit these criteria. Our results show that phenes such as root number, root diameter, and lateral root branching density are stable, reliable measures and are not affected by imaging method or plane. Metrics aggregating multiple phenes such as , , , and estimate different subsets of the constituent phenes; they however do not provide any information regarding the underlying phene states. Estimates of phene aggregates are not unique representations of underlying constituent phenes: multiple phenotypes having phenes in different states could have similar aggregate metrics. Root growth angle is an important phene which is susceptible to measurement errors when 2D projection methods are used. Metrics that aggregate phenes which are complex functions of root growth angle and other phenes are also subject to measurement errors when 2D projection methods are used. These results support the hypothesis that estimates of phenes are more useful than metrics aggregating multiple phenes for phenotyping root architecture. We propose that these concepts are broadly applicable in phenotyping and phenomics.

摘要

高通量表型分析对于弥合基因型与表型之间的差距至关重要。因此,用于描述表型的方法应能稳健应对测量误差,随时间相对稳定,并且最重要的是,能对基本表型成分提供可靠估计。在本研究中,我们使用功能结构建模来评估用于描述根系结构的定量表型指标,以确定它们如何符合这些标准。我们的结果表明,诸如根数量、根直径和侧根分支密度等表型特征是稳定、可靠的测量指标,不受成像方法或平面的影响。汇总多个表型特征的指标,如[此处原文缺失具体指标名称],估计了组成表型特征的不同子集;然而,它们并未提供有关潜在表型特征状态的任何信息。表型特征聚集体的估计并非潜在组成表型特征的唯一表示:具有处于不同状态的表型特征的多种表型可能具有相似的聚集体指标。根生长角度是一个重要的表型特征,当使用二维投影方法时,它容易受到测量误差的影响。当使用二维投影方法时,汇总作为根生长角度和其他表型特征复杂函数的表型特征的指标也会受到测量误差的影响。这些结果支持了这样的假设,即对于根系结构表型分析,表型特征的估计比汇总多个表型特征的指标更有用。我们提出这些概念在表型分析和表型组学中具有广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f87c/8028844/39b754499403/PLANTPHENOMICS2021-6953197.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验