Suppr超能文献

利用 LASSO 开发一种模型预测 SARS-CoV-2 奥密克戎变异株患者的住院时间(LOS)。

Development of a model by LASSO to predict hospital length of stay (LOS) in patients with the SARS-Cov-2 omicron variant.

机构信息

Medical Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Virulence. 2023 Dec;14(1):2196177. doi: 10.1080/21505594.2023.2196177.

Abstract

The length of stay (LOS) in hospital varied considerably in different patients with COVID-19 caused by SARS-CoV-2 Omicron variant. The study aimed to explore the clinical characteristics of Omicron patients, identify prognostic factors, and develop a prognostic model to predict the LOS of Omicron patients. This was a single center retrospective study in a secondary medical institution in China. A total of 384 Omicron patients in China were enrolled. According to the analyzed data, we employed LASSO to select the primitive predictors. The predictive model was constructed by fitting a linear regression model using the predictors selected by LASSO. Bootstrap validation was used to test performance and eventually we obtained the actual model. Among these patients, 222 (57.8%) were female, the median age of patients was 18 years and 349 (90.9%) completed two doses of vaccination. Patients on admission diagnosed as mild were 363 (94.5%). Five variables were selected by LASSO and a linear model, and those with P < 0.05 were integrated into the analysis. It shows that if Omicron patients receive immunotherapy or heparin, the LOS increases by 36% or 16.1%. If Omicron patients developed rhinorrhea or occur familial cluster, the LOS increased by 10.4% or 12.3%, respectively. Moreover, if Omicron patients' APTT increased by one unit, the LOS increased by 0.38%. Five variables were identified, including immunotherapy, heparin, familial cluster, rhinorrhea, and APTT. A simple model was developed and evaluated to predict the LOS of Omicron patients. The formula is as follows: Predictive LOS = exp(12.66263 + 0.30778).

摘要

奥密克戎变异株引起的 COVID-19 患者的住院时间(LOS)在不同患者中差异很大。本研究旨在探讨奥密克戎患者的临床特征,确定预后因素,并建立预测模型来预测奥密克戎患者的 LOS。这是在中国一家二级医疗机构进行的单中心回顾性研究。共纳入中国 384 例奥密克戎患者。根据分析数据,我们采用 LASSO 选择原始预测因子。通过使用 LASSO 选择的预测因子拟合线性回归模型来构建预测模型。使用 Bootstrap 验证来测试性能,最终得到实际模型。在这些患者中,222 例(57.8%)为女性,患者中位年龄为 18 岁,349 例(90.9%)完成两剂疫苗接种。入院时诊断为轻症的患者有 363 例(94.5%)。LASSO 和线性模型选择了 5 个变量,将 P < 0.05 的变量纳入分析。结果表明,如果奥密克戎患者接受免疫治疗或肝素治疗,LOS 分别增加 36%或 16.1%。如果奥密克戎患者出现流涕或家族聚集,LOS 分别增加 10.4%或 12.3%。此外,如果奥密克戎患者的 APTT 增加 1 个单位,LOS 增加 0.38%。确定了 5 个变量,包括免疫治疗、肝素、家族聚集、流涕和 APTT。建立并评估了一个简单的模型来预测奥密克戎患者的 LOS。公式如下:预测 LOS = exp(12.66263 + 0.30778)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e1/10101656/e24eee2b7c8a/KVIR_A_2196177_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验