Suppr超能文献

荷电水界面键合界面层的动量依赖的和频振动光谱学。

Momentum-dependent sum-frequency vibrational spectroscopy of bonded interface layer at charged water interfaces.

机构信息

Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R. O. C.

出版信息

Sci Adv. 2023 Apr 14;9(15):eadg2823. doi: 10.1126/sciadv.adg2823. Epub 2023 Apr 12.

Abstract

Interface-specific hydrogen (H)-bonding network of water directly controls the energy transfer and chemical reaction pathway at many charged aqueous interfaces, yet to characterize these bonded water layer structures remains a challenge. We now develop a sum-frequency spectroscopic scheme with varying photon momenta as an all-optic solution for retrieving the vibrational spectra of the bonded water layer and the ion diffuse layer and, hence, microscopic structural and charging information about an interface. Application of the method to a model surfactant-water interface reveals a hidden weakly donor H-bonded water species, suggesting an asymmetric hydration-shell structure of fully solvated surfactant headgroups. In another application to a zwitterionic phosphatidylcholine lipid monolayer-water interface, we find a highly polarized bonded water layer structure associating to the phosphatidylcholine headgroup, while the diffuse layer contribution is experimentally proven to be negligible. Our all-optic method offers an in situ microscopic probe of electrochemical and biological interfaces and the route toward future imaging and ultrafast dynamics studies.

摘要

界面特异性氢键网络直接控制着许多带电水界面的能量转移和化学反应途径,但表征这些结合水层结构仍然是一个挑战。我们现在开发了一种具有不同光子动量的和频光谱方案,作为一种全光解决方案,用于获取结合水层和离子扩散层的振动光谱,从而获得界面的微观结构和荷电信息。该方法在一个模型表面活性剂-水界面上的应用揭示了一种隐藏的弱供体氢键结合水物种,这表明完全溶剂化的表面活性剂头基具有不对称的水化壳结构。在另一个应用于两性离子磷脂酰胆碱脂质单层-水界面的例子中,我们发现了一个高度极化的结合水层结构与磷脂酰胆碱头基相关联,而扩散层的贡献则被实验证明可以忽略不计。我们的全光方法为电化学和生物界面提供了一种原位微观探针,并为未来的成像和超快动力学研究提供了一种途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56d1/10096568/14bebcb425ae/sciadv.adg2823-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验